• 제목/요약/키워드: Angle-of-attack

검색결과 739건 처리시간 0.026초

Design and Implementation of Fuzzy Logic Controller for Wing Rock

  • Anavatti, Sreenatha G.;Choi, Jin Young;Wong, Pupin P.
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권4호
    • /
    • pp.494-500
    • /
    • 2004
  • The wing rock phenomenon is a high angle of attack aerodynamic motion manifested by limit cycle roll oscillations. Experimental studies reveal that direct control and manipulation of leading edge vortices, through the use of 'blowing' techniques is effective in the suppression of wing rock. This paper presents the design of a robust controller for the experimental implementation of one such 'blowing' technique - recessed angle spanwise blowing (RASB), to achieve wing rock suppression over a range of operating conditions. The robust controller employs Takagi - Sugeno fuzzy system, which is fine-tuned by experimental simulations. Performance of the controller is assessed by real-time wind tunnel experiments with an 80 degree swept back delta wing. Robustness is demonstrated by the suppression of wing rock at a range of angles of attack and free stream velocities. Numerical simulation results are used to further substantiate the experimental findings.

Nonlinear aerostatic stability analysis of Hutong cable-stayed rail-cum-road bridge

  • Xu, Man;Guo, Weiwei;Xia, He;Li, Kebing
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.485-503
    • /
    • 2016
  • To investigate the nonlinear aerostatic stability of the Hutong cable-stayed rail-cum-road bridge with ultra-kilometer main span, a FEM bridge model is established. The tri-component wind loads and geometric nonlinearity are taken into consideration and discussed for the influence of nonlinear parameters and factors on bridge resistant capacity of aerostatic instability. The results show that the effect of initial wind attack-angle is significant for the aerostatic stability analysis of the bridge. The geometric nonlinearities of the bridge are of considerable importance in the analysis, especially the effect of cable sag. The instable mechanism of the Hutong Bridge with a steel truss girder is the spatial combination of vertical bending and torsion with large lateral bending displacement. The design wind velocity is much lower than the static instability wind velocity, and the structural aerostatic resistance capacity can meet the requirement.

리브가 있는 판형 열교환기 관내부 최적화 (Optimization of the Channel of a Plate Heat Exchanger wits Ribs)

  • 이관수;양동근
    • 설비공학논문집
    • /
    • 제14권3호
    • /
    • pp.199-205
    • /
    • 2002
  • In this paper, the optimum shape and arrangement of ribs in the channel of a plate heat exchanger are studied. The following dimensionless geometric parameters of ribs are selected as design variables: rib height ($H_R$), angle of attack ($\beta$), rib pitch ($P_R$), rib distance (L) and aspect ratio of rib (AR). The optimization is performed by minimizing the objective function consisting of the Nusselt number and the friction factor. The optimal values of design variables are as follows: $H_R$=0.263, $\beta$=0.290, $P_R$=3.142, L: 3.954, AR=0.342. The pressure drop and the heat transfer of the optimum model, compared to those of the reference model, are increased by 15.1% and 41.6%, respectively.

FUZZY CONTROL LAW OF HIGHLY MANEUVERABLE HIGH PERFORMANCE AIRCRAFT

  • Sul Cho;Park, Rai-Woong;Nam, Sae-Kyu;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.205-209
    • /
    • 1998
  • A synthesis of fuzzy variable structure control is proposed to design a high-angle-of-attack flight system for a modification version of the F-18 aircraft. The knowledge of the proportional, integral, and derivative control is combined into the fuzzy control that addresses both the highly nonlinear aerodynamic characteristics of elevators and the control limit of thrust vectoring nozzles. A simple gain scheduling method with multi-layered fuzzy rules is adopted to obtain an appropriate blend of elevator and thrust vectoring commands in the wide operating range. Improving the computational efficiency, an accelerated kernel for on-line fuzzy reasoning is also proposed. The resulting control system achieves the good flying quantities during a high-angle-of- attack excursion. Thus the fuzzy logic can afford the control engineer a flexible means of deriving effective control laws in the nonlinear flight regime.

  • PDF

Autopilot Design for Agile Missile with Aerodynamic Fin and Thrust Vecotring Control

  • Lee, Ho-Chul;Choi, Yong-Seok;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.525-530
    • /
    • 2003
  • This paper is concerned with a control allocation strategy using the dynamic inversion which generates the nominal control input trajectories, and autopilot design using the time-varying control technique which is time-varying version of pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. Dynamic inversion can decide the amount of the deflection of each control effector, aerodynamic fin and thrust vectoring control, to extract the maximum performance by combining the action of them. Time-varying control technique for autopilot design enhance the robustness of the tracking performance for a reference command. Nonlinear simulations demonstrates the dynamic inversion provides the effective nominal control input trajectories to achieve the angle of attack command, and time-varying control technique exhibits good robustness for a wide range of angle of attack.

  • PDF

Control of Small Scale Rotary Wing Unmanned Aerial Vehicle (R-UAV) Using Backstepping.

  • Kannan, Somasundar;Lian, Bao-Hua;Hwang, Tae-Won;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1005-1007
    • /
    • 2005
  • A Nonlinear approach to control of Small Scale Rotary Wing Unmanned Aerial Vehicle (R-UAV) is presented. Using Backstepping, a globally stabilizing control law is derived. We derive backstepping control law for angle of attack and sideslip control. The inherent nonlinear nature of the system are considered here which helps in naturally stabilizing without extensive external effort. Thus, the resulting control law is much simpler than if the feedback linearization had been used.

  • PDF

Supersonic flow bifurcation in twin intake models

  • Kuzmin, Alexander;Babarykin, Konstantin
    • Advances in aircraft and spacecraft science
    • /
    • 제5권4호
    • /
    • pp.445-458
    • /
    • 2018
  • Turbulent airflow in channels of rectangular cross section with symmetric centerbodies is studied numerically. Shock wave configurations formed in the channel and in front of the entrance are examined. Solutions of the unsteady Reynolds-averaged Navier-Stokes equations are obtained with finite-volume solvers of second-order accuracy. The solutions demonstrate an expulsion/swallowing of the shocks with variations of the free-stream Mach number or angle of attack. Effects of the centerbody length and thickness on the shock wave stability and flow bifurcation are examined. Bands of the Mach number and angle of attack, in which there exist non-unique flow fields, are identified.

수치해석을 이용한 파력발전용 웰즈터빈의 유동특성에 관한 연구 (A Study on Flow Characteristics of a Wells Turbine for Wave Power Conversion Using Numerical Analysis)

  • 김정환;이형구;이연원;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.182-190
    • /
    • 2001
  • The aerodynamics of the Wells turbine has been studied using 3-d, unstructured mesh flow solver for the Reynolds-averaged Navier-Stokes equations. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define 3-D numerical grid is based upon that of an experimental test rig. The 3-D Wells turbine model, consisting of approximate 220,000 cells is tested of four axial flow rates. In the calculations the angle of attack has been varied between 10˚ and 30˚ of blades, Representative results from each case are presented graphically andy analysed. It is concluded that this technique holds much promise for future development of Wells turbines.

  • PDF

Experimental and numerical identification of flutter derivatives for nine bridge deck sections

  • Starossek, Uwe;Aslan, Hasan;Thiesemann, Lydia
    • Wind and Structures
    • /
    • 제12권6호
    • /
    • pp.519-540
    • /
    • 2009
  • This paper presents the results of a study into experimental and numerical methods for the identification of bridge deck flutter derivatives. Nine bridge deck sections were investigated in a water tunnel in order to create an empirical reference set for numerical investigations. The same sections, plus a wide range of further sections, were studied numerically using a commercially available CFD code. The experimental and numerical results were compared with respect to accuracy, sensitivity, and practical suitability. Furthermore, the relevance of the effective angle of attack, the possible assessment of non-critical vibrations, and the formulation of lateral vibrations were studied. Selected results are presented in this paper. The full set of raw data is available online to provide researchers and engineers with a comprehensive benchmarking tool.

계량식 안강망의 실험연구 (An Experiment of Improved Stow Net - Characteristics of Upthrust Float and Shearing Hood -)

  • 김용해;고관서
    • 수산해양기술연구
    • /
    • 제16권2호
    • /
    • pp.61-67
    • /
    • 1980
  • Previously, we had experimented on the model of stow net under the various combination including water velocity, spherical floats and elevating floats with the shearing hoods instead of the upper beam, however we couldn't concern with their characteristics. Spherical floats maintain their buoyancy at the same level when the speed increases, only the drag increases and effects some reduction in the fishing height. To eliminate this shortcoming, floats have to some hydrodynamic lifting force which increases with increasing speed. Phillips float with a dish-shaped metal plate welded on at the lower part and synthetic upthrusting float were used for the experiment to compare with their characteristics. Six kinds of model shearing hood depend on the angle of attack were used to test the characteristic of the shearing hood. According to their results, when the angle of attack is 30\ulcorner, the lift and drag coefficient reveal 1. 36, 0.84 respectively. And also experimented on the 5X8cm shearing hood to investigate the suitability for the model stow net.

  • PDF