• Title/Summary/Keyword: Android sensor

Search Result 179, Processing Time 0.02 seconds

A WPHR Service for Wellness in the Arduino Environment (아두이노 환경에서 웰니스를 위한 WPHR 서비스)

  • Cho, Young-bok;Woo, Sung-hee;Lee, Sang-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.83-90
    • /
    • 2018
  • In this paper, we propose an algorithm for analyzing personal health log information in android environment, providing personal health log information in android environment, providing personalized exercise information and monitoring the condition of pedestrians. Personal health log data collection is performed based on raw data of user using MPU6050 sensor based on Arduino. Noise was removed and age threshold was applied to distinguish movement information. In addition, to protect personal information, safety is enhanced by providing anti-compilation prevention and encryption/decryption of APK file, and the result of movement information collection is measured according to sensor location. Experimental results showed that the MPU6050 sensor mounted one the ankle wsa measured 98.97% more accurately then the wrist. In addition, the loading time of SEED 128 bit encryption based DEX file has the average time of 0.55ms, minimizing the overhead.

Development of Smart Fingerprint Recognition System with Android Platform (안드로이드 플랫폼을 탑재한 스마트 지문인식장치 개발)

  • Lee, Kap Rai
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.1018-1026
    • /
    • 2012
  • This paper presents a developing method of smart fingerprint recognition system. First, we design a hardware configuration circuit using a 32bit Risc CPU, a fingerprint sensor, a LCD, and a WiFi communication chip to realize the smart fingerprint recognition systems. It is necessary to develop a JNI (Java Native Interface) library and a device drive program of fingerprint sense to develop application program of fingerprint recognition system with Android platform. Thus second, we develop a device drive and a JNI program. And we also develop an application program of fingerprint recognition systems using developed JNI library. Finally test results are presented to illustrate the performance of the developed smart fingerprint recognition system.

A Design and Implementation of Control Application for Arduino Prime Smart Car

  • Park, Jin-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.59-64
    • /
    • 2016
  • In this paper, we design and implement an Application based on android platform, which can control arduino Prime Smart Car using Bluetooth communication. This Application consist of Bluetooth communication module, manual mode module, and line-tracer mode module. In the Bluetooth communication module, it checks the on/off status of Smartphone Bluetooth. If Bluetooth status is off, it activates Bluetooth, selects the corresponding device from Bluetooth device list, and connects with a pair. In order to reduce coding time, we implements Bluetooth communication using inherited class from android Bluetooth package. In the manual mode module, it implements six direction moving button and stop button, which can control arduino Prime Smart Car. In the line-tracer mode module, it implements Prime Smart Car with self-driving function using TCRT5000 sensor. And moving button and stop button is disabled.

ORB-SLAM based SLAM Framework for the Spatial Recognition using Android Oriented Tethered Type AR Glasses (안드로이드 기반 테더드 타입 AR 글래스의 공간 인식을 위한 ORB-SLAM 기반 SLAM프레임워크 설계)

  • Do-hoon Kim;Joongjin Kook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.6-10
    • /
    • 2023
  • In this paper, we proposed a software framework structure to apply ORB-SLAM, the most representative of SLAM algorithms, so that map creation and location estimation technology can be applied through tethered AR glasses. Since tethered AR glasses perform only the role of an input/output device, the processing of camera and sensor data and the generation of images to be displayed through the optical display module must be performed through the host. At this time, an Android-based mobile device is adopted as the host. Therefore, the major libraries required for the implementation of AR contents for AR glasses were hierarchically organized, and spatial recognition and location estimation functions using SLAM were verified.

  • PDF

Development of Real-Data Motion Sensor Emulator (실측 데이터 기반 모션센서 에뮬레이터의 개발)

  • Lee, MinSuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.2
    • /
    • pp.68-75
    • /
    • 2011
  • This paper describes the development of an open source motion sensor emulator. It helps developers to understand the motion sensor and its data better. Through this emulator, the realtime or stored motion sensor data can be applied to the applications that utilize motion sensors. The data of motion sensors which include accelerometer sensor, magnetic field sensor, gyro sensor, GPS, and so on, can be collected by using smart phones or motion sensors. We also describe a visualizer which shows various graphs, video and 3D animations based on the data sent by the emulator. It helps developers to understand motion sensors and how to use the sensors. The developed emulator is compatible with Android sensor simulator.

Development of Android-based Application for Measure a Space Coordinate and an Area using of Orientation Sensor (방향 센서를 활용한 좌표 및 면적 측정 안드로이드 애플리케이션 개발)

  • Kim, Eun-Gil;Yeom, MI-Ryeong;Kim, Jong-Hoon
    • Journal of The Korean Association of Information Education
    • /
    • v.15 no.3
    • /
    • pp.439-447
    • /
    • 2011
  • In this paper, we developed the application for measure an area that it compute a space coordinate of real object to represent through a camera by using the Orientation sensor of smart devices. The application will help to solve a problems of an epistemological obstacles in an area learning. We conducted an expert evaluation for the application of educative usability, educative effect and etc.. The expert group was comprised of elementary school teacher who teach curriculum of an area in mathematics. In result, it was positively evaluated in terms of educative usability.

  • PDF

Implementation of Electricity Power Management System for Industries based on USN (USN 기반의 산업용 전력관리시스템 구현)

  • Kim, Min-Ho;Lee, Nam-Gil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.103-109
    • /
    • 2012
  • In this paper, We suggest electricity power management system which makes a good efficient and minimize wasteness of electricity power. We made electricity power management system based USN(Ubiquitous Sensor Network) for industries, factories, public offices and so on, with optimized system. Simply, we can measure and control electricity power as we plug it outlets. This system can monitor and control electricity power, organizing network of PLC(Power Line Communication) and TCP/IP with the sensor for electricity power. Through the acquisition data, this proposed system can manage and save the electricity power efficiently and also we can connect this system to server, anytime, anywhere with Android phone.

Safe Bike : Secure your Bicycle with this smart Arduino based GPS device

  • Godfrey, Daniel;Song, Mi-Hwa
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.16-26
    • /
    • 2016
  • This proposed project is about a bicycle anti theft devised system which helps people protect the bicycle from theft and helps to track the stolen bicycle's location using a smart phone. Safety bike uses two main devices to keep the bicycle secured, the vibration sensor and GPS sensor. The purpose of this project is to put all these small devices into one well connected system which will help the bicycle owner have more control over the security of his own bicycle. The whole system can be divided into two main parts. The first part is about the hardware development whereby all electronics components are connected via the circuit design using wire wrapping technique. This hardware part includes, a vibrations sensor, a GPS receiver, a toggle switch, LED light, Bluetooth and a buzzer. Wireless Bluetooth signals are used as the means of communication between the smartphone and the microcontroller. The second part is the software part which is being to program and control the whole system. The program is written using MikroBasic, a full-featured Basic compiler for microcontroller based systems. In conclusion, this system is designed to enable user to have control in securing his/her bicycle also being able to find and locate it at any time using GPS receiver and mobile android application.

Software Library Design for GNSS/INS Integrated Navigation Based on Multi-Sensor Information of Android Smartphone

  • Kim, Youngki;Fang, Tae Hyun;Seo, Kiyeol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.279-286
    • /
    • 2022
  • In this paper, we designed a software library that produces integrated Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) navigation information using the raw measurements provided by the GNSS chipset, gyroscope, accelerometer and magnetometer embedded in android smartphone. Loosely coupled integration method was used to derive information of GNSS /INS integrated navigation. An application built in the designed library was developed and installed on the android smartphone. And we conducted field experiments. GNSS navigation messages were collected in the Radio Technical Commission for Maritime Service (RTCM 3.0) format by the Network Transport of RTCM via Internet Protocol (NTRIP). As a result of experiments, it was confirmed that design requirements were satisfied by deriving navigation such as three-dimensional position and speed, course over ground (COG), speed over ground (SOG), heading and protection level (PL) using the designed library. In addition, the results of this experiment are expected to be applicable to maritime navigation applications using smart device.

Implementation of Group Management System with Smart Phone Devices and Wireless Sensor Network (스마트폰 및 무선 센서 네트워크를 기반으로 한 그룹관리 시스템의 구현)

  • Lee, Seung-Joon;Jung, Kyung-Kwon;Lee, Hyun-Kwan;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.378-381
    • /
    • 2011
  • The group management system with Wireless Sensor Network and android application is proposed in this paper. The proposed system was composed of personal devices with sensor nodes of WSN, manager device of android platform, and the web server. The sensor node used by each group member send a data packet to the manager device every 2 seconds. The leader device displays and transmits entire information to the web server. The web server represents these information through web page. Therefore, guardians can assure their group member's safety and security on the web page. The RSSI value of each sensor node converted by computed log-normal path loss model into distance value and displays on the manager device and the web page.

  • PDF