• Title/Summary/Keyword: Androgen

Search Result 297, Processing Time 0.031 seconds

Apoptosis-inducing Effect of Takrisodokyeum Extract in Androgen Independent Prostate Cancer Cells (남성호르몬 비의존형 전립선 암세포에서 탁리소독음(托裏消毒飮) 추출물의 세포고사 유도 효과)

  • Lee, Hyung-Jae;Kwon, Kang-Beom;Shin, Byung-Cheul;Kim, Eun-Kyung;Han, Mi-Jeong;Song, Mi-Young;Lee, Young-Rae;Park, Byung-Hyun;Ryu, Do-Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.861-865
    • /
    • 2006
  • Takrisodokyeum (TRSDY) has been known to exert anti-tumoral activity in Korea. However, its molecular mechanism of action is not understood. In this study, we found that TRSDY induced apoptosis in androgen-independent prostate cancer DU145 cells as evidenced by DNA fragmentation and chromatine condensation in hoechst 33342 dye staining. Our data demonstrated that TRSDY-induced apoptotic cell death was accompanied by increases of PTEN and Par-4 in a time-dependent manner Taken together, these results suggest that TRSDY induce PTEN and Par-4 expression, and eventually lead to apoptotic cell death in androgen independent prostate cancer DU145 cells.

Albizzia julibrissin Suppresses Testosterone-induced Benign Prostatic Hyperplasia by Regulating 5α-Reductase Type 2 - Androgen Receptor Pathway

  • Hong, Geum-Lan;Kim, Hyun-Tae;Park, Se-Ra;Lee, Na-Hyun;Ryu, Kyung-A;Kim, Tae-Won;Song, Gyu-Yong;Jung, Ju-Young
    • Natural Product Sciences
    • /
    • v.25 no.3
    • /
    • pp.200-207
    • /
    • 2019
  • Albizzia julibrissin (AJ) is an herbal medicine that shows low toxicity, promotes promoting blood circulation and mitigates the inflammation and has mild side effects. Benign prostate hyperplasia (BPH) is one of the most common diseases that occurs in older males and often results in lower urinary tract symptoms. This study was conducted to evaluate the protective effect of AJ against BPH using LNCaP cells and Sprague Dawley rats treated with testosterone. Treatment with AJ extract reduced the expression of androgen receptor (AR) and prostate-specific antigen (PSA) in vitro. In vivo, rats were divided into 6 groups: 1 (Normal Control); 2 (Testosterone propionate (TP) alone); 3 (TP + finasteride); 4 (TP + AJ 10 mg/kg); 5 (TP + AJ 50 mg/kg); 6 (TP + AJ 300 mg/kg). The groups treated with AJ showed reduced the relative prostate weights and BPH-related proteins were altered, with decreased AR, PSA and proliferating cell nuclear antigen (PCNA) observed by western blot. Histopathological analysis revealed the therapeutic effect of AJ, with a decreased thickness of epithelial cells and reduced level of PCNA and $5{\alpha}$-reductase type 2. These results suggest that AJ extract could ameliorate testosterone-induced benign prostatic hyperplasia.

Establishment of an In Vitro TCD (Testosterone Compound Detection) System (테스토스테론 물질 검출을 위한 in vitro TCD 시스템 구축)

  • Lee, Dong-Geun;Jo, Jung-Kwon;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1159-1163
    • /
    • 2019
  • Although there is a growing interest in male menopause, a phenomenon associated with male hormone depletion, current kits using antibodies to quantify male hormones are expensive. In this study, we constructed an in vitro system for verifying the activity or concentration of male steroid hormones using a transcriptional activity test. A reporter plasmid, pGL2-Neo-ARE-AdE1BTATA, which reacts to testosterone, was constructed. In this plasmid, the ARE-AdE1bTATA sequences can be bounded by the testosterone - androgen receptor complex to express luciferase as a reporter. Then, a stable transfection was performed on the human prostate cancer cell line, LNcap-LN3. The constructed LNcap-LN3/pGL2-Neo-ARE-AdE1BTATA testosterone compound detection (TCD) system showed quantitatively proportional luciferase activities to concentrations of $10^{-13}$ to $10^{-8}M$ of standard testosterone. The established in vitro TCD system will contribute to the development of materials for health/functional foods and drugs as it will be possible to search en masse for testosterone-like or testosterone-inhibiting substances derived from natural materials.

Beta-carotene prevents the spermatogenic disorders induced by exogenous scrotal hyperthermia through modulations of oxidative stress, apoptosis, and androgen biosynthesis in mice

  • Yon, Jung-Min;Kim, Jae Seung;Lin, Chunmei;Park, Seul Gi;Gwon, Lee Wha;Lee, Jong-Geol;Baek, In-Jeoung;Nahm, Sang-Seop;Nam, Sang-Yoon
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.2
    • /
    • pp.59-67
    • /
    • 2019
  • We investigated whether ${\beta}$-carotene (${\beta}-CA$) or ellagic acid (EA), originating from various fruits and vegetables, has a preventive effect against male infertility induced by exogenous scrotal hyperthermia. ICR adult mice were intraperitoneally treated with 10 mg/kg of ${\beta}-CA$ or EA daily for 13 days consecutively. During this time, mice were subjected to transient scrotal heat stress in a water bath at $43^{\circ}C$ for 20 min on day 7, and their testes and blood were obtained on day 14 for histopathologic and biochemical analyses. Heat stress induced significant testicular weight reduction, germ cell loss and degeneration, as well as abnormal localization of phospholipid hydroperoxide glutathione peroxidase (PHGPx) and manganese superoxide dismutase (MnSOD) in spermatogenic and Leydig cells. Heat stress also altered the levels of oxidative stress (lipid peroxidation, SOD activity, and PHGPx, MnSOD, and $HIF-1{\alpha}$ mRNAs), apoptosis (Bax, Bcl-xL, caspase 3, $NF-{\kappa}B$, and $TGF-{\beta}1$ mRNAs), and androgen biosynthesis (serological testosterone concentration and $3{\beta}$-hydroxysteroid dehydrogenase mRNA) in testes. These changes were all improved significantly by ${\beta}-CA$ treatment, but only slightly improved by EA treatment. These findings indicate that ${\beta}-CA$, through modulations of oxidative stress, apoptosis, and androgen biosynthesis, is a potent preventive agent against testicular injuries induced by scrotal hyperthermia.

MLL5, a histone modifying enzyme, regulates androgen receptor activity in prostate cancer cells by recruiting co-regulators, HCF1 and SET1

  • Lee, Kyoung-Hwa;Kim, Byung-Chan;Jeong, Chang Wook;Ku, Ja Hyeon;Kim, Hyeon Hoe;Kwak, Cheol
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.634-639
    • /
    • 2020
  • In prostate cancer, the androgen receptor (AR) transcription factor is a major regulator of cell proliferation and metastasis. To identify new AR regulators, we focused on Mixed lineage leukemia 5 (MLL5), a histone-regulating enzyme, because significantly higher MLL5 expression was detected in prostate cancer tissues than in matching normal tissues. When we expressed shRNAs targeting MLL5 gene in prostate cancer cell line, the growth rate and AR activity were reduced compared to those in control cells, and migration ability of the knockdown cells was reduced significantly. To determine the molecular mechanisms of MLL5 on AR activity, we proved that AR physically interacted with MLL5 and other co-factors, including SET-1 and HCF-1, using an immunoprecipitation method. The chromatin immunoprecipitation analysis showed reduced binding of MLL5, co-factors, and AR enzymes to AR target gene promoters in MLL5 shRNA-expressing cells. Histone H3K4 methylation on the AR target gene promoters was reduced, and H3K9 methylation at the same site was increased in MLL5 knockdown cells. Finally, xenograft tumor formation revealed that reduction of MLL5 in prostate cancer cells retarded tumor growth. Our results thus demonstrate the important role of MLL5 as a new epigenetic regulator of AR in prostate cancer.

Effects of red ginseng oil(KGC11ℴ) on testosterone-propionate-induced benign prostatic hyperplasia

  • Lee, Jeong Yoon;Kim, Sohyuk;Kim, Seokho;Kim, Jong Han;Bae, Bong Seok;Koo, Gi-Bang;So, Seung-Ho;Lee, Jeongmin;Lee, Yoo-Hyun
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.473-480
    • /
    • 2022
  • Background: Benign prostatic hyperplasia (BPH) is a disease characterized by abnormal proliferation of the prostate, which occurs frequently in middle-aged men. In this study, we report the effect of red ginseng oil (KGC11o) on BPH. Methods: The BPH-induced Sprague-Dawley rats were divided into seven groups: control, BPH, KGC11o 25, 50, 100, 200, and finasteride groups. KGC11o and finasteride were administered for 8 weeks. The BPH biomarkers, DHT, 5AR1, and 5AR2, androgen receptor, prostate-specific antigen (PSA), Bax, Bcl-2, and TGF-β were determined in the serum and prostate tissue. The cell viability after KGC11o treatment was determined using BPH-1 cells, and, androgen receptor, Bax, Bcl-2, and TGF-β were confirmed by western blotting. Results: In the in vivo study, administration of KGC11o reduced prostate weight by 18%, suppressed DHT (up to 22%) and 5AR2 (up to 12%) levels from administration of 100 mg/kg KGC11o (P < 0.05). PSA was significantly downregulated dose-dependently from at the concentration of 50 mg/kg KGC11o (P < 0.05). BPH-1 cell viability significantly reduced through the treatment with KGC11o. In vitro and vivo, AR, Bcl-2 TGF-β levels reduced significantly but Bax was increased (P < 0.05). Conclusion: These results suggest that KGC11o may inhibit the development of BPH by significantly reducing the levels of BPH biomarkers via 5ARI, anti-androgenic effect, and anti-proliferation effect, serving as a potential functional food for treating BPH.

Menin Enhances Androgen Receptor-Independent Proliferation and Migration of Prostate Cancer Cells

  • Kim, Taewan;Jeong, Kwanyoung;Kim, Eunji;Yoon, Kwanghyun;Choi, Jinmi;Park, Jae Hyeon;Kim, Jae-Hwan;Kim, Hyung Sik;Youn, Hong-Duk;Cho, Eun-Jung
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.202-215
    • /
    • 2022
  • The androgen receptor (AR) is an important therapeutic target for treating prostate cancer (PCa). Moreover, there is an increasing need for understanding the AR-independent progression of tumor cells such as neuroendocrine prostate cancer (NEPC). Menin, which is encoded by multiple endocrine neoplasia type 1 (MEN1), serves as a direct link between AR and the mixed-lineage leukemia (MLL) complex in PCa development by activating AR target genes through histone H3 lysine 4 methylation. Although menin is a critical component of AR signaling, its tumorigenic role in AR-independent PCa cells remains unknown. Here, we compared the role of menin in AR-positive and AR-negative PCa cells via RNAi-mediated or pharmacological inhibition of menin. We demonstrated that menin was involved in tumor cell growth and metastasis in PCa cells with low or deficient levels of AR. The inhibition of menin significantly diminished the growth of PCa cells and induced apoptosis, regardless of the presence of AR. Additionally, transcriptome analysis showed that the expression of many metastasis-associated genes was perturbed by menin inhibition in AR-negative DU145 cells. Furthermore, wound-healing assay results showed that menin promoted cell migration in AR-independent cellular contexts. Overall, these findings suggest a critical function of menin in tumorigenesis and provide a rationale for drug development against menin toward targeting high-risk metastatic PCa, especially those independent of AR.

Mixture of Corni Fructus and Schisandrae Fructus improves testosterone-induced benign prostatic hyperplasia through regulating 5α-reductase 2 and androgen receptor

  • Hyun Hwangbo;Min Yeong Kim;Seon Yeong Ji ;Beom Su Park;TaeHee Kim;Seonhye Yoon;Hyunjin Kim;Sung Yeon Kim ;Haeun Jung;Taeiung Kim;Hyesook Lee;Gi-Young Kim;Yung Hyun Choi
    • Nutrition Research and Practice
    • /
    • v.17 no.1
    • /
    • pp.32-47
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Benign prostatic hyperplasia (BPH) characterized by an enlarged prostate gland is common in elderly men. Corni Fructus (CF) and Schisandrae Fructus (SF) are known to have various pharmacological effects, including antioxidant and anti-inflammatory activities. In this study, we evaluated the inhibitory efficacy of CF, SF, and their mixture (MIX) on the development of BPH using an in vivo model of testosterone-induced BPH. MATERIALS/METHODS: Six-week-old male Sprague-Dawley rats were randomly divided into seven groups. To induce BPH, testosterone propionate (TP) was injected to rats except for those in the control group. Finasteride, saw palmetto (SP), CF, SF, and MIX were orally administered along with TP injection. At the end of treatment, histological changes in the prostate and the level of various biomarkers related to BPH were evaluated. RESULTS: Our results showed that BPH induced by TP led to prostate weight and histological changes. Treatment with MIX effectively improved TP-induced BPH by reducing prostate index, lumen area, epithelial thickness, and expression of BPH biomarkers such as 5α-reductase type 2, prostate-specific antigen, androgen receptor, and proliferating cell nuclear antigen compared to treatment with CF or SF alone. Moreover, MIX further reduced levels of elevated serum testosterone, dihydrotestosterone, and prostate-specific antigen in BPH compared to the SP, a positive control. BPH was also improved more by MIX than by CF or SF alone. CONCLUSIONS: Based on the results, MIX is a potential natural therapeutic candidate for BPH by regulating 5α-reductase and AR signaling pathway.

Megakaryocyte-Derived IL-8 Acts as a Paracrine Factor for Prostate Cancer Aggressiveness through CXCR2 Activation and Antagonistic AR Downregulation

  • Sadan, Dahal;Prakash, Chaudhary;Yi-Sook, Jung;Jung-Ae, Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.210-218
    • /
    • 2023
  • Prostate cancer is the fifth leading cause of cancer-related mortality in men, primarily because of treatment resistance, recurrence, and metastasis. In the present study, we investigated the role of paracrine interleukin-8 (IL-8) in the antagonistic expression of IL-8 and androgen receptor (AR), and the contribution of IL-8 to prostate cancer aggressiveness. In hormone-responsive LNCaP cells that do not express IL-8, recombinant IL-8 treatment significantly increased expressions of IL-8, CXC chemokine receptor 2 (CXCR2), matrix metalloproteinase (MMP)-2/9, Snail, and vimentin. IL-8 treatment significantly decreased AR and E-cadherin expression. IL-8-induced gene expression changes were suppressed by navarixin, a CXCR1/2 inhibitor, and gallein, a Gβγ inhibitor. In PC-3 androgen-refractory prostate cancer cells, IL-8 knockdown reduced expressions of CXCR2, MMP-2/9, Snail, and vimentin, and increased AR and E-cadherin expressions at the mRNA and protein levels. Co-culture with MEG-01 human megakaryocytic cells secreting high levels of IL-8 induced gene expression changes in both LNCaP and PC-3 cells, similar to those induced by IL-8 treatment. The altered gene expressions were accompanied by significant activation of transcription factor Snail in LNCaP and PC-3 cells. Treatment with the CXCR blocker navarixin inhibited the invasion of PC-3 cells but not LNCaP cells. However, invasion induced by MEG-01 was inhibited by navarixin in both LNCaP and PC-3 cells. The collective findings demonstrate that IL-8 enhances CXCR2 expression, which antagonistically regulates AR expression. More importantly, through changes in IL-8/CXCR2-regulated gene expression, IL-8 induces antiandrogen therapy resistance and epithelial-mesenchymal transition in prostate cancer.

Sex Steroid Hormone and Ophthalmic Disease (성호르몬과 안질환)

  • Kim, Jin-Ju;Yu, Hyeong-Gon;Ku, Seung-Yup
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.2
    • /
    • pp.89-98
    • /
    • 2010
  • Sex and its tropic hormones influence the lacrimal system, corneal anatomy and disease, aqueous humor dynamics and glaucoma, crystalline lens and cataract, and retinal disease. Dry eye occurs especially frequently during pregnancy, oral contraceptive use, and after menopause, during which androgen levels decrease. Androgen control development, differentiation, and lipid production of sebaceous glands throughout the body, and androgen deficiency also leads to meibomian gland dysfunction and evaporative dry eye. On the other hand, estrogen causes a reduction in size, activity, and lipid production of sebaceous glands. Sex and its tropic hormones also influence the corneal anatomy and disease, and corneal thickening occurred on the second day of the menstrual cycle and around the time of ovulation and appeared to be related to estrogen levels. Fuchs' dystrophy is more commonly seen in postmenopausal women than men and may be linked to hormonal changes that occur with aging. In addition, overexpression of estrogen and progesterone receptors in the conjunctiva of vernal keratoconjunctivitis patients. Serum progesterone levels also may be associated with intraocular pressure especially in pregnant women, and for the women. For women with cataracts, hormone levels were typical of menopause, and there was a significant negative correlation between estradiol and follicular stimulating hormone levels. In addition, serum testosterone levels are associated with the development of diabetic retinopathy. Although the role of sex hormones on the eye is largely unknown, and the results should be interpreted with caution until replicated, the functions of sex hormones in ocular disease remains to be investigated, because they may be involved in structure and function of the ocular components, which are important in the pathogenesis of ocular disease.