• Title/Summary/Keyword: Andong Fault System

Search Result 10, Processing Time 0.02 seconds

Geological Structure around Andong Fault System, Pungcheon-myeon, Andong, Korea (안동시 풍천면 안동단층계 주변의 지질구조)

  • Kang, Ji-Hoon;Lee, Duck-Seon
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.83-94
    • /
    • 2008
  • The Pungcheon-myeon, Andong, consists mainly of Precambrian metamorphic rocks, Jurassic igneous rocks, Cretaceous sedimentary rocks (Hasandong, Jinju and Iljik Formations) and Cretaceous igneous rocks (gabbroic rocks, dykes), in which several major faults are developed; Andong fault of ENE trend, which is the boundary fault of the Cretaceous Gyeongsang Basin and the Precambrian-Jurassic basement (Yeongnam Massif), Namhu fault parallel to it, Maebong fault of NNW direction, bow-shaped Gwangdeok fault of ENE direction which is convex toward SSE direction, and Hahoe fault of NNE direction. This paper is researched the geological structures around these major faults by means of the detailed geometric analysis on beddings, joints, faults and drag folds. As a result, a reverse slip faulting of top-to-the SSE movement accompanied with a regional drag folding is recognized from the arrangement of bedding poles measured around the Gwangdeok and Hahoe faults at its northeastern extension, and a zone of Gwangdeok drag fold of 150-300 m width, which is wider at the central and eastern parts of Gwangdeok fault and narrower at its western part and Hahoe fault, is also defined. It indicates that the Hahoe and Gwangdeok faults are a single fault and their movements are coeval unlike the results of earlier reasearchers. And, In this area are recognized two types of faults [(E)NE${\sim}$EW(fault I), WNW${\sim}$NNW (fault II), trending faults] and four types of joints [EW (I), (N)NW (II), NNE (III), NE (IV) trending joints]. These fractures were formed at least through four different events, named as Dn to Dn+3 phases. (1) Dn phase; the formation of joint (I) (Gwangdeok joint) and the intrusion of acidic dykes of EW trend under the compression of EW direction. (2) Dn+1 phase; the formations of joint (II) (Maebong joint), lens-shaped boudinage of acidic dykes, oblique-slip reverse fault (Fault I-Gwangdeok fault) under the compression of (N)NW direction, and the formation of regional zone of Gwangdeok drag fold accompanying the Gwangdeok faulting. (3) Dn+2 phase; those of joint (III), Fault II (Maebong fault) by dextral strike-slip movement of Maebong joint under the compression of NNE direction, and the extension cutting of Dn+1 structures due to the Maebong faulting. (4) Dn+3 phase; the jointing (IV) and the reactivation of Fault II as oblique-slip type with predominant dextral motion which took place under the compression of NE direction. It also suggests that the Maebong fault is not a tear fault deveolped during thrust tectonics of the Andong and Gwangdeok faults but is a post-fault during different tectonic event.

Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System (지적보전시스템의 실시간 다중고장진단 기법 개발)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).

Development of Intelligent Fault Diagnosis System for CIM (CIM 구축을 위한 지능형 고장진단 시스템 개발)

  • Bae, Yong-Hwan;Oh, Sang-Yeob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • This paper describes the fault diagnosis method to order to construct CIM in complex system with hierarchical structure similar to human body structure. Complex system is divided into unit, item and component. For diagnosing this hierarchical complex system, it is necessary to implement a special neural network. Fault diagnosis system can forecast faults in a system and decide from the signal information of current machine state. Comparing with other diagnosis system for a single fault, the developed system deals with multiple fault diagnosis, comprising hierarchical neural network (HNN). HNN consists of four level neural network, i.e. first is fault symptom classification and second fault diagnosis for item, third is symptom classification and forth fault diagnosis for component. UNIX IPC is used for implementing HNN with multitasking and message transfer between processes in SUN workstation with X-Windows (Motif). We tested HNN at four units, seven items per unit, seven components per item in a complex system. Each one neural network represents a separate process in UNIX operating system, information exchanging and cooperating between each neural network was done by message queue.

  • PDF

Reliability Analysis of Slab Transfer Equipment in Hot Rolling Furnace (열간압연 가열로 슬라브 이송장치 신뢰도 해석)

  • Bae, Young-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.6-14
    • /
    • 2006
  • The development of automatic production systems have required intelligent diagnostic and monitoring functions to overcome system failure and reduce production loss by the failure. In order to perform accurate operations of the intelligent system, implication about total system failure and fault analysis due to each mechanical component failures are required. Also solutions for repair and maintenance can be suggested from these analysis results. As an essential component of a mechanical system, a bearing system is investigated to define the failure behavior. The bearing failure is caused by lubricant system failure, metallurgical deficiency, mechanical condition(vibration, overloading, misalignment) and environmental effects. This study described slab transfer equipment fault train due to stress variation and metallurgical deficiency from lubricant failure by using FTA.

Fault Train Construction Based on Shallow Reasoning Strategy (경험기반추론 전략을 이용한 고장트레인 구축)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.19-26
    • /
    • 2005
  • There are three reasoning method in fault diagnosis process. The shallow reasoning is based on the experiential knowledge and deep reasoning is based on physical model. Hybrid reasoning is mixing two type reasoning. This study describes about fault train embodiment of screw type air compressor that is used widely in industrial facilities by using various experimental method and shallow reasoning. We investigate macroscopic failure cause of air compressor through naked eye observation and then microscopic failure cause by various experimental method. We composed fault train with fault knowledge based on empirical data and scientific data that is acquired through several experiments. It is possible to analysis system reliability and failure rate with these fault train.

Development of Multiple Neural Network for Fault Diagnosis of Complex System (복합시스템 고장진단을 위한 다중신경망 개발)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.36-45
    • /
    • 2000
  • Automated production system is composed of many complicated techniques and it become a very difficult task to control, monitor and diagnose this compound system. Moreover, it is required to develop an effective diagnosing technique and reduce the diagnosing time while operating the system in parallel under many faults occurring concurrently. This study develops a Modular Artificial Neural Network(MANN) which can perform a diagnosing function of multiple faults with the following steps: 1) Modularizing a complicated system into subsystems. 2) Formulating a hierarchical structure by dividing the subsystem into many detailed elements. 3) Planting an artificial neural network into hierarchical module. The system developed is implemented on workstation platform with $X-Windows^{(r)}$ which provides multi-process, multi-tasking and IPC facilities for visualization of transaction, by applying the software written in $ANSI-C^{(r)}$ together with $MOTIF^{(r)}$ on the fault diagnosis of PI feedback controller reactor. It can be used as a simple stepping stone towards a perfect multiple diagnosing system covering with various industrial applications, and further provides an economical approach to prevent a disastrous failure of huge complicated systems.

  • PDF

Movement History of Faults Considered from the Geometric and Kinematic Characteristics of Fracture System in Gilan-cheongsong Area, Gyeongsang Basin, Korea (경상분지 길안-청송 지역에서 단열계의 기하학적.운동학적 특성으로부터 고찰된 단층운동사)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.293-305
    • /
    • 2009
  • The Gilan-Cheongsong area, which is in contact with Yeongyang and Uiseong Blocks of Gyeongsang Basin, Korea, consists of Precambrian metamorphic rocks, Triassic Cheongsong granite, Cretaceous sedimentary rocks(Iljik, Hupyeongdong, Jeomgok Formations), and Cretaceous igneous rocks(andesite, quartz porphyry, felsite). In this area are developed faults trending in (W)NW, NNW, ENE, NS, (N)NE directions which are representative in the Gyeongsang Basin. We analyzed the geometric and kinematic characteristics of fracture systems to inquire into movement history and sense of these faults in this area. This study suggests that these faults were mainly strike-slip movement. The orientations of fracture sets show ENE, NNW, (W)NW, (N)NE, NS in descending order of frequency. Their prolongation presents (W)NW, NNW, ENE, (N)NE, NS in descending order of predominance, and also agrees with that of faults in this area. The development sequence and movement sense of fracture sets are summarized as follows; (1) (W)NW: dextral shearing $\rightarrow$ (2) (W)NW and NNW: conjugate shearing(the former: dextral, the latter: sinistral) $\rightarrow$ (3) NNW: dextral shearing $\rightarrow$ (4) (W)NW: sinistral shearing $\rightarrow$ (5) ENE: dextral shearing $\rightarrow$ (6) ENE and NS: conjugate shearing(the former: sinistral, the latter: dextral) $\rightarrow$ (7) (N)NE: sinistral shearing, and this result is closely associated with the development sequence and movement sense of faults developed in this area.

Geology and Tectonics of the Mid-Central Region of South Korea (남한(南韓) 중부지역(中部地域)의 토질(土質)과 지구조(地構造))

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.2 no.4
    • /
    • pp.73-90
    • /
    • 1969
  • The area studied is a southwestern part of Okcheon geosynclinal zone which streches diagonally across the Korean peninsula in the mid-central parts of South Korea, and is bounded by Charyeong mountain chains in the north and by Sobaek mountain chains in the south. The general trend of the zone is of NE-SW direction known as Sinian direction. Okcheon system of pre-Cambrian age occupies southwestern portion of Okcheon geosynclinal zone, and Choseon and Pyeongan systems of Cambrian to Triassic age in northeastern portion of the zone. It was defined by the writer that the former was called "Okcheon Paleogeosynclinal zone" and the latter "Okcheon Neogeosynclinal zone," although T. Kobayashi named them "Metamorphosed Okcheon zone" and "Non-metamorphosed Okcheon zone" respectively and thought that sedimentary formations in both zones were same in origin and of Paleozonic age, and C.M. Son also described that Okchon system was of post-Choseon (Ordovician) and pre-Kyeongsang (Cretaceous) in age. According to the present study two zones are separated by great fault so that the geology in both zones is not only entirely different in origin and age, but also their geolosical structures are discontinuous. Stratigraphy and structure of Okcheon system are clearly established and defined by the writer and its age is definitely pre-Cambrian. It is clarified by present study that the meta-sediments in and at vicinity of Charyeong mountain chains are correlated to Weonnam series of pre-Cambrian age which occupies and continues from northeast to southwest in and at south of Sobaek mountain chains, and both metasediments constitute basement of Okcheon system. Pyeongan, Daedong and Kyeongsang systems were deposited in few narrow intermontain basins in Okcheon paleogeosynclinal zone after it was emerged at the end of Carboniferous period. Granites of Jurassic and Cretaceous ages and volcanics of Cretaceous age are cropped out in the zone. Jurassic granite is aligned generally with the trend of Okcheon geosynclinal zone, whereas Cretaceous granite lacks of trend in distribution. Many isoclinal folds and thrust faults caused by Taebo orogeny at the end of Jurassic period are also parallel with Sinian directieon and dip steeply to northwest. Charyeong, Noryeong, Sobaek, and Deogyu mountain chains are located in areas of anticlinorium, and Kyongsang system in narrow synclinal zones. Folds in Okcheon neogeosynclinal zone are generally of N 70-80W direction but deviate to Sinian direction at the western parts of the zone. This phenomena is interpreted by the fact that the folds were originated by Songrim disturbance at the end of Triassic period and later partly modified by Taebo orogeny. Thrust faults of Taebo orogeny coentinue from Okcheon paleogeosynclinal zone into neogeosynclinal zone, forming imbricated structure as previously described. Strike-slip faults perpendicular to Sinian direction and shear faults diagonally across it by 55 degrees also prevail in neogeosynclinal zone. It is concluded from viewpoints on geology and geological structure that l)Okchon geosyncline had changed its location and affected by numerous disturbances through geologic time, and 2)mountain chains in the area such as Charyeong, Noryeong, Sobaek, and Deogyu were originated as folded mountains. Differing from others, however, Sobaek range was probably formed at the time of Songrim disturbance and modified later by Taebo orogeny. It is cut by Danyang-Jeomchon fault at the vicinity of Joryeong near Munkyeong village and does not continue to southwest beyond the fault, whereas southwestern portion of erstwhile Sobaek range continues to Taebaek rangd northeastward from Deogyusan passing through Sangju, Yecheon, and Andong. From these evidences, the writer has newly defined the erstwhile Sobaek range in such a way that Sobaek range is restricted only to northeastern portion and Deogyu range is named for the southwestern portion of previous Bobaek range.

  • PDF

Geometrical Interpretation on the Development Sequence and the Movement Sense of Fractures in the Cheongsong Granite, Gilan-myeon Area, Uiseong Block of Gyeongsang Basin, Korea (경상분지 의성지괴 길안면지역에서 청송화강암의 단열 발달사 및 운동성에 대한 기하학적 해석)

  • Kang, Ji-Hoon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.4 s.46
    • /
    • pp.180-193
    • /
    • 2006
  • The Gilan area in the central-northern part of Uiseong Block of Cretaceous Gyeongsang Basin is composed of Precambrian metamorphic rocks, Triassic Cheongsong granite, Early Cretaceous Hayans Group, and Late Cretaceous-Paleocene igneous rocks. In this area, the faults of various directions are developed: Oksan fault of $NS{\sim}NNW$ trend, Gilan fault of NW trend, Hwanghaksan fault of WNW trend, and Imbongsan fault of EW trend. Several fracture sets with various geometric indicators, which determine their relative timing (sequence and coexistence relationships) and shear sense, we well observed in the Cheongsong granite, the basement of Gyeongsang Basin. The aim of this study is to determine the development sequence of extension fractures and the movement sense of shear fractures in the Gitan area on the basis of detailed analysis of their geometric indicators (connection, termination, intersection patterns, and cross-cutting relations). This study suggests that the fracture system of the Gilan area was formed at least through seven different fracturing events, named as Pre-Dn to Dn +5 phases. The orientations of fracture sets show (W) NW, NNW, NNE, EW, NE in descending order of frequency. The orientation and frequency patterns are concordant with those of faults around and in the Gilan area on a geological map scale. The development sequence and movement sense of fracture sets are summarized as follows. (1) Pre-Dn phase: extension fracturing event of $NS{\sim}NNW$ and/or $WNW{\sim}ENE$ trend. The joint sets of $NS{\sim}NNW$ trend and of $WNW{\sim}ENE$ trend underwent the reactivation histories of sinistral ${\rightarrow}$dextral${\rightarrow}$sinistral shearing and of (dextral${\rightarrow}$) sinistral shearing with the change of stress field afterward, respectively. (2) Dn phase: that of NW trend. The joint set experienced the reactivations of sinistral${\rightarrow}$dextral shearing. (3) Dn + 1 phase: that of $NNE{\sim}NE$ trend. The joint set was reactivated as a sinistral shear fracture afterward. (4) Dn +2 phase: that of $ENE{\sim}EW$ trend. (5) Dn +3 phase: that of $WNW{\sim}NW$ trend. (6) Dn+4 phase: that of NNW trend. The joint set underwent a dextral shearing after this. (7) The last Dn +5 phase: that of NNE trend.

Geological Structure of the Moisan Epithermal Au-Ag Mineralized Zone, Haenam and its Tectonic Environment at the Time of the Mineralization (해남 모이산 천열수 금-은 광호대의 지질구조와 광화작용 당시의 지구조환경)

  • Kang, Ji-Hoon;Lee, Deok-Seon;Ryoo, Chung-Ryul;Koh, Sang-Mo;Chi, Se-Jung
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.413-431
    • /
    • 2011
  • An Epithemal Au-Ag mineralized zone is developed in the Moisan area of Hwangsan-myeon, Haenam-gun, Jeol-lanam-do, Korea, which is located in the southwestern part of the Ogcheon metamorphic zone. It is hosted in the Hwangsan volcaniclastics of the Haenam Formation of the Late Cretaceous Yucheon Group. This research investigated the characteristics of bedding arrangement, fold, fault, fracture system, quartz vein and the time-relationship of the fracture system to understand the geological structure related to the formation of the mineralized zone. On the basis of this result, the tectonic environment at the time of the mineralization was considered. Beds mainly trend east-northeast and gently dip into north-northwest or south-southeast. Their poles have been rearranged by subhorizontal-upright open fold of (east)-northeast trend as well as dip-slip fault. Fracture system was formed through at least 6~7 different deformation events. D1 event; formation phase of the main fracture set of EW (D1-1) and NS (D1-2) trends with a good extensity, D2 event; that of the extension fracture of NW trend, and conjugate shear fracturing of the EW (dextral) and NS (sinistral) trends, D3 event; that of the extension fracture of NE trend, and conjugate shear refracturing of the EW (sinistral) and NS (dextral) trends, D4 event; that of the extension fracture of NS trend showing a poor extensity, D5 event; that of the extension fracture of NW trend, and conjugate shear refracturing of the EW (dextral) and NS (sinistral) trends, D6 event; that of the extension fracture of EW trend showing a poor extensity. Frequency distribution of fracture sets of each deformation event is D1-1 (19.73 %)> D1-2 (16.44 %)> D3=D5 (14.79 %)> D2 (13.70 %)> D4 (12.33 %)> D6 (8.22 %) in descending order. The average number of fracture sets within 1 meter at each deformation event is D6 (5.00)> D5 = D4 (4.67)> D2 (4.60)> D3 (4.13)> D1-1 (3.33)> D1-2 (2.83) in descending order. The average density of all fractures shows 4.20 fractures/1 m, that is, the average spacing of all fractures is more than 23.8 cm. The frequency distribution of quartz veins at each orientation is as follows: EW (52 %)> NW (28 %)> NS (12 %)> NE (8 %) trends in descending order. The average density of all quartz veins shows 4.14 veins/1 m, that is, the average spacing of all quartz veins is more than 24.2 cm. Microstructural data on the quartz veins indicate that the epithermal Au-Ag mineralization (ca. 77.9~73.1 Ma) in the Moisan area seems to occur mainly along the existing D1 fracture sets of EW and NS trends with a good extensity not under tectonic stress but non-deformational environment directly after epithermal rupture fracturing. The D1 fracturing is considered to occur under the unstable tectonic environment which alternates compression and tension of NS trend due to the oblique northward subduction of the Izanagi plate resulting in the igneous activity and deformation of the Yucheon Group and the Bulguksa igneous rocks during Late Cretaceous time.