• Title/Summary/Keyword: Ancient DNA

Search Result 60, Processing Time 0.032 seconds

Sex and Age Determination of the Kaya s Ancient Human Skeletal Remains via Dental Approaches (가야시대 인골의 치아에 의한 성별 및 연령추정)

  • Mee-Eun Kim;Myung-Yun Ko;Bong-Soo Park
    • Journal of Oral Medicine and Pain
    • /
    • v.21 no.2
    • /
    • pp.225-242
    • /
    • 1996
  • The author studied to determine the sex and age of 8 ancient human skeletal remains, which had excavated from ancient tombs located in Yeanri, Kimhae. Some kinds of personal identification methods their skulls and teeth were used for this study and the results were obtained as follows : 1. Sex determination was possible in ancient teeth from 4th to 5th century, using detection of X-Y homologous amelogenin gene by polymerase chain reaction. 2. DNA analysis proved that the materials examined were all male, but which always did not coincide with the results from other methods for sex determination including comparison of sexual differentiation of cranium and teeth and use of discriminant functions in the dental measurement. 3. There was little difference of the estimated ages between the methods by regression of pulp cavity and attrition in teeth. The ages from these two methods always did not coincide with ones from evaluation closure of cranial and palatal sutures. 4. Sex and age of the materials were determined as follows ; $\cdot$ Y9 was estimated to be male in early sixties. $\cdot$ Yl2 was estimated to be male in late twenties to early thirties. $\cdot$ Y37 was estimated to be male in early forties. $\cdot$ Y70 was estimated to be male in early sixties. $\cdot$ Y87 was estimated to be male in late forties. $\cdot$ Y109 was estimated to be male in early forties. $\cdot$ Yl29 was estimated to be male in late thirties to early forties. $\cdot$ Yl42 was estimated to be male in late fifties to early sixties.

  • PDF

Maternal lineage of Okinawa indigenous Agu pig inferred from mitochondrial DNA control region

  • Touma, Shihei;Shimabukuro, Hirotoshi;Arakawa, Aisaku;Oikawa, Takuro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.501-507
    • /
    • 2019
  • Objective: The Agu is the only native pig breed in Japan, which is reared in Okinawa prefecture, the southernmost region in Japan. Its origins are considered to be of Asian lineage; however, the genetic background of the Agu is still unclear. The objective of this study was to elucidate the maternal lineage of the Okinawa indigenous Agu pig with the use of the mitochondrial DNA (mtDNA) control region. Methods: The mtDNA control regions of Agu pigs were sequenced and the phylogenetic relationship among Agu, East Asian and European pigs was investigated with the use of 78 Agu individuals. Results: Twenty-seven polymorphic sites and five different haplotypes (type 1 to type 5) were identified within the Agu population. Phylogenetic analysis indicated that types 1 and 2 were included in East Asian lineages; however, the remaining types 3, 4, and 5 were of European lineages, which showed a gene flow from European pigs in the 20th century. Sixty-seven out of 78 Agu individuals (85.9%) possessed mtDNA haplotypes 1 and 2 of the East Asian lineage, which were identical to two haplotypes of ancient mtDNA (7,200 to 1,700 years before the present) excavated at archaeological sites in Okinawa. Conclusion: This study confirmed that the East Asian lineage is dominant in the maternal genetic background of the Agu population, supporting the hypothesis that the ancestors of the Agu pig were introduced from the Asian continent.

Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins

  • Chaikam, Vijay;Karlson, Dale T.
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs.

Application of CRISPR-Cas9 gene editing for congenital heart disease

  • Seok, Heeyoung;Deng, Rui;Cowan, Douglas B.;Wang, Da-Zhi
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.6
    • /
    • pp.269-279
    • /
    • 2021
  • Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) is an ancient prokaryotic defense system that precisely cuts foreign genomic DNA under the control of a small number of guide RNAs. The CRISPR-Cas9 system facilitates efficient double-stranded DNA cleavage that has been recently adopted for genome editing to create or correct inherited genetic mutations causing disease. Congenital heart disease (CHD) is generally caused by genetic mutations such as base substitutions, deletions, and insertions, which result in diverse developmental defects and remains a leading cause of birth defects. Pediatric CHD patients exhibit a spectrum of cardiac abnormalities such as septal defects, valvular defects, and abnormal chamber development. CHD onset occurs during the prenatal period and often results in early lethality during childhood. Because CRISPR-Cas9-based genome editing technology has gained considerable attention for its potential to prevent and treat diseases, we will review the CRISPR-Cas9 system as a genome editing tool and focus on its therapeutic application for CHD.

APPLICATION OF RANDOMLY AMPLIFIED POLYMORPHIC DNA(RAPD) ANALYSIS METHOD FOR CLASSIFICATION AND BREEDING OF THE KOREAN GINSENG

  • Lim Y.P.;Shin C.S.;Lee S.J.;Youn Y.N.;Jo J.S.
    • Proceedings of the Ginseng society Conference
    • /
    • 1993.09a
    • /
    • pp.138-142
    • /
    • 1993
  • Korean ginseng has been widely used as medicine from ancient times in Asia. Current breeding efforts in Korea include the individual plant selection and the subsequent pure - line isolation, and considerable number of lines with desirable traits have thus been isolated. However, there were rare data on genetic maker and its analysis for selection of superior varieties. For taxonomic characterization and development of genetic markers for ginseng breeding, molecular biological methods including the RFLP and RAPD methods were applied. Cytoplasmic DNA of ginseng was analyzed for RFLP analysis. However. there is no different pattern among the chloroplast DNA or mitochondrial DNA of variants. In the case of RAPD analysis, the band patterns using 4 of 10 RAPD primers show the distinctive polymorphism among 9 ginseng variants, and lines, and Similarity Index(SI) on polymorphism was calculated for the extent and nature of these variabilities in ginseng. The sequences of 4 selected primers were TGCCGAGCTG, AATCGGGCTG. GAAACGGGTG, and GTGACGTAGG. By SI based on the polymorphic band patterns, Chungkyung - Chong and Hwangskoog - Chong, and JakyungChong 81783 and Jinjakyung of Russia showed the most close SI. The data of KG10l coincided with the fact that it was released from Hwangskoog - Chong. and Jakyung - Chong 81783 and Jinjakyung of Russia showed the most close SI. The data of KG101 coincided with the fact that it was released from Hwangskoog - Chong by breeding process. The data of Jakyung strains indicated the significant variation among the strains. From these results, RAPD analysis method could be succesively applied to the classification and genetic analysis for breeding of Korean ginseng.

  • PDF

Human endogenous retroviruses and neurologic disorders (인간 내인성 레트로 바이러스와 신경학적 장애)

  • Hwang, Moon-Hyon;Sim, Young-Je
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.6
    • /
    • pp.275-281
    • /
    • 2017
  • Human endogenous retroviruses (HERVs) are fossil viruses that began to be assimilated into the human genome some 30~40 million years ago, and now constitute nearly 8% of the human genome. These ancient retroviruses have since accumulated mutations that have rendered them defective; thus, they have been termed junk DNA. However, recent research indicates that not all HERVs remain silent passengers. Although they have not been shown to be causative of any human disease, endogenous retroviral sequences may become expressed under select pathological circumstances such as neurological disorders, including multiple sclerosis (MS), schizophrenia, and Amyotrophic Lateral Sclerosis (ALS); viral infections, including human immunodeficiency virus (HIV) and herpesvirus; and multiple types of cancers. This review focused on the possible interactions of HERVs and neurological diseases.

Identification and molecular characterization of the chitinase gene, EaChi, from the midgut of the earthworm, Eisenia andrei (붉은줄지렁이 (Eisenia andrei) 중장에서 발현되는 chitinase 유전자, EaChi의 동정 및 분자생물학적 특성에 관한 연구)

  • Tak, Eun Sik;Kim, Dae hwan;Lee, Myung Sik;Ahn, Chi Hyun;Park, Soon Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.3
    • /
    • pp.31-37
    • /
    • 2010
  • Chitinases (EC 3.2.1.14) hydrolyze the ${\beta}$-1,4-linkages in chitin, the second most abundant polymer of N-acetyl-${\beta}$-D-glucosamine which is a structural component of protective biological matrices such as fungal cell walls and insect exoskeletons. The glycosyl hydrolases 18 family including chitinases is an ancient gene family widely expressed in archea, prokaryotes and eukaryotes. Since earthworms live in the soil with a lot of microbial activities and fungi are supposed to be a major component of the diet of earthworm, it has been reported that there would be appropriate immune system to protect themselves from microorganisms attacks. In this study, the novel chitinase, EaChi, from the midgut of earthworm, Eisenia andrei, were identified and characterized. To obtain full-length cDNA sequence of chitinase, RT-PCR and RACE-PCR analyses were carried out by using the previously identified EST sequence amongst cDNA library established from the midgut of E. andrei. EaChi, a partial chitinase gene, was composed of 927 nucleotides encoding 309 amino acids. By the multiple sequence alignments of amino acids with other different species, it was revealed that EaCHI is a member of glycosyl hydrolases 18 family, which has two highly conserved domains, substrate binding and catalytic domain.

Inhibitory Effect of the Phenolic Compounds from Apples Against Oxidative Damage and Inflammation

  • Sim, Jang-Seop;Jeong, Jin-Boo;Lee, Jong-Hwa;Kwon, Tae-Hyung;Cha, Young-Joon;Jeong, Hyung-Jin
    • Korean Journal of Plant Resources
    • /
    • v.23 no.6
    • /
    • pp.487-497
    • /
    • 2010
  • ROS have been associated with pathogenic processes including carcinogenesis through direct effect on DNA and play an important role in the pathogenesis of inflammation. Because of many types of phenolic acid derivatives and flavonoids, apples have been one of the human diet since ancient times and are one of the most commonly consumed fruits in worldwide. In this study, catechin, chlorogenic acid and phlorizin dihydrate were purified and identified by HPLC and GC/MS. The contents of catechin, chlorogenic acid and phlorizin dihydrate were 1.01 mg, 7.01 mg and 3.67 mg/ kg wet weight, respectively. Catechin and phlorizin dihydrate were found to significantly inhibit oxidative DNA damage, while chlorogenic did not affect. Also, catechin inhibits NO and $PGE_2$ production via suppressing iNOS and COX-2 expression. However, chlorogenic acid and phlorizin dihydrate did not affect. Our results show that catechin may be the most active phenolic compound in anti-oxidative damage and anti-inflammatory effect.