• 제목/요약/키워드: Anchoring safety

검색결과 38건 처리시간 0.026초

Research on reinforcement mechanism of soft coal pillar anchor cable

  • Li, Ang;Ji, Bingnan;Zhou, Haifeng;Wang, Feng;Liu, Yingjie;Mu, Pengfei;Yang, Jian;Xu, Ganggang;Zhao, Chunhu
    • Geomechanics and Engineering
    • /
    • 제29권6호
    • /
    • pp.697-706
    • /
    • 2022
  • In order to explore the stable anchoring conditions of coal side under the mining disturbance of soft section coal pillar in Wangcun Coal Mine of Chenghe Mining Area, the distribution model of the anchoring support pressure at the coal pillar side was established, using the strain-softening characteristics of the coal to study the distribution law of anchoring coal side support pressure. The analytical solution for the reinforcement anchorage stress in the coal pillar side was derived with the inelastic state mechanical model. The results show that the deformation angle of the roadway side and roof increases with the roof subsidence due to the mining influence at the adjacent working face, the plastic deformation zone extends to the depth of the coal side, and the increase of anchorage stress can effectively control the roof subsidence and further deterioration of plastic zone. The roadway height and the peak support pressure have a certain influence on the anchorage stress, the required anchorage stress of the coal side rises with the roadway height and the peak support pressure. The required anchorage stress of the coal pillar side decreases as the cohesion between the coal seam and the roof and floor and the anchor length increases. Then, applied the research result to Wangcun coal mine in Chenghe mining area, the design of anchor cable reinforcement support was proposed for the section of coal pillars side that has been anchored and deformed, which achieved great results and effectively controlled the convergence and deformation of the side, providing a safety guarantee for the roadway excavation and mining.

구조용 합성섬유 표면형상에 따른 부착특성 (Bond Characteristics of Structural Synthetic Fibers)

  • 원종필;임동휘;박찬기;한일영;김방래
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.335-340
    • /
    • 2001
  • Recently in abroad, structural synthetic fiber developed, has been studied extensively as a substitute for steel fiber due to its properties such as corrosion-resistance, low density, good pumping, and in-place safety, etc. In this study, we conducted pull-out test, for seven different geometries of structural synthetic fibers and obtained optimum geometry for structural synthetic fiber which fully utilizes matrix anchoring without revealing fiber fracturing. According to pull-out test results, it was found that crimped type structural synthetic fiber give significant improvement in the interface toughness(roll-out enemy) and pull-out load.

  • PDF

Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles

  • An, Joon-Sang;Yoon, Yeo-Won;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • 제16권3호
    • /
    • pp.321-329
    • /
    • 2018
  • Classic braced walls use struts and wales to minimize ground movements induced by deep excavation. However, the installation of struts and wales is a time-consuming process and confines the work space. To secure a work space around the retaining structure, an anchoring system works in conjunction with a braced wall. However, anchoring cannot perform well when the shear strength of soil is low. In such a case, innovative retaining systems are required in excavation. This study proposes an innovative earth-retaining wall that uses in situ soil confined in dual sheet piles as a structural component. A numerical study was conducted to evaluate the stability of the proposed structure in cohesionless dry soil and establish a design chart. The displacement and factor of safety of the structural member were monitored and evaluated. According to the results, an increase in the clearance distance increases the depth of safe excavation. For a conservative design to secure the stability of the earth-retaining structure in cohesionless dry soil, the clearance distance should exceed 2 m, and the embedded depth should exceed 40% of the wall height. The results suggest that the proposed method can be used for 14 m of excavation without any internal support structure. The design chart can be used for the preliminary design of an earth-retaining structure using in situ soil with dual steel sheet piles in cohesionless dry soil.

소규모 건설현장 떨어짐 사망재해 저감방안 연구 - 비계 및 작업발판 중심 - (Research of the reduction measures for fall accident death in small scale construction sites. - On the Basis of work plate and scaffolding -)

  • 유현동;강경식
    • 대한안전경영과학회지
    • /
    • 제16권3호
    • /
    • pp.55-62
    • /
    • 2014
  • During five years (Year 2009~2013), Total victims of 72 %(81,560 people) and those 50.6 %(1,258 people) of death accident occurs in small scale construction site which operate 2 million USD less construction budget. Especially, falling death accident account for 785 people, in the share of 33.2 %(261 people) death disaster takes due to defect of original cause materials. The major safety issues in small scale work place take place while scaffold installation, disassembling, work-plate improper installation or non-professional skills of workers. Furthermore, labor subcontract systems make small construction site shortage of resources. Those workers regard work-plate as unnecessary and consumables supplies. Because of that most of workers use unsafe workplace in most construction site. Therefore, in order to prevent falling accident occurring in small scale work site, government should organize related regulations such as "Work site safety construction method" and then expands education support, financial aid, and sourcing safety supplies for work plate which offer broad variety experiences. Also, introduce certificate solutions for various work plates to improve safety function such as anchoring type method and anti sliding function.

외해 개방형 정박지의 안전성 향상에 관한 연구 - 포항항 중심으로 (Study on Anchored Safety Improvements for Open Sea Anchorage - Focused on Pohang Port)

  • 김정록;국승기
    • 한국항해항만학회지
    • /
    • 제39권3호
    • /
    • pp.233-239
    • /
    • 2015
  • 최근 각종 해양사고 발생으로 인하여 해양 관련한 안전사고에 대한 문제들이 대두되고 있다. 이러한 사고 중 우리나라 연안에 위치한 31개소 무역항의 지정된 정박지 중 특히 외해개방형 정박지 경우 기상악화로 인하여 유효한 선박 파주력을 확보하지 못함으로서 주묘가 발생하여 사고 위험이 많아지고 있으나 정박선박의 안전성 확보나 정박지의 효율적인 운영을 위한 체계적인 정박지 안전관리 기준안은 미흡한 실정이다. 또한, 항만의 지리적인 위치 및 지형적인 특성으로 인하여 특정 조건의 외력에 취약한 외해 개방형 정박지 경우에는 태풍은 물론 강한 돌풍 등에 의해 선박은 주묘 가능성이 높아지고 이로 인한 2차 사고 발생이 우려된다. 본 논문에서는 외해개방형 정박지의 사례로 포항항의 경우 최근 주묘로 인한 해양사고 사례를 검토하여 입출항 선박의 크기별 한계외력을 계산하고 정박지 안전성을 확보할 수 있는 한계 외력을 선박 크기별 한계외력의 기준을 정하는 연구로 기존 개별 선박의 정박안전성 평가에 관한 연구들과 달리 정박선박의 안전성 확보 및 효율적인 정박지 운영을 위해 필요한 정박지 관리에 관한 기초적인 기준으로 활용할 수 있을 것으로 판단된다.

Effects of concrete strength on structural behavior of holed-incrementally prestressed concrete (H-IPC) girder

  • Han, Man Yop;Kim, Sung Bo;Kang, Tae Heon
    • Advances in concrete construction
    • /
    • 제3권2호
    • /
    • pp.113-126
    • /
    • 2015
  • Holed-Incrementally Prestressed Concrete (H-IPC) girders are designed using the following new design concepts. At first, web openings reduce the self-weight of the girder, and also diffuse prestressing tendon anchorages. The reduced end anchoring forces decrease the web thickness of the end sections. Additionally, precast technology help to improve the quality of concrete and to reduce the construction period at the site. For experimentally verification, two 50 m full-scale H-IPC girders are manufactured with different concrete strength of 55 MPa and 80 MPa. The safety, stiffness, ductility, serviceability and crack development of H-IPC girder are measured and compared with each other for different strengths. Both girders show enough strength to carry live load and good stiffness to satisfy the design criteria. The experimental result shows the advantages of using high strength concrete and adopting precast girder. The test data can be used as a criterion for safety control and maintenance of the H-IPC girder.

Database of Navigational Environment Parameters (Water Depth, Sediment Type and Marine Managed Areas) to Support Ships in an Emergency

  • Kim, Tae-Ho;Yang, Chan-Su
    • 한국항해항만학회지
    • /
    • 제43권5호
    • /
    • pp.302-309
    • /
    • 2019
  • This study introduces the navigational environment database(DB) compiling water depth, sediment type and marine managed areas (MMAs) in coastal waters of South Korea. The water depth and sediment data were constructed by combining their sparse points of electronic navigation chart and survey data with high spatial resolution using the inverse distance weighting and natural neighbor interpolation method included in ArcGIS. The MMAs were integrated based on all shapefiles provided by several government agencies using ArcGIS because the areas should be used in an emergency case of ship. To test the validity of the constructed DB, we conducted a test application for grounding and anchoring zones using a ship accident case. The result revealed each area of possible grounding candidates and anchorages is calculated and displayed properly, excluding obstacle places.

Novel Endoscopic Stent for Anastomotic Leaks after Total Gastrectomy Using an Anchoring Thread and Fully Covering Thick Membrane: Prevention of Embedding and Migration

  • Jung, Gum Mo;Lee, Seung Hyun;Myung, Dae Seong;Lee, Wan Sik;Joo, Young Eun;Jung, Mi Ran;Ryu, Seong Yeob;Park, Young Kyu;Cho, Sung Bum
    • Journal of Gastric Cancer
    • /
    • 제18권1호
    • /
    • pp.37-47
    • /
    • 2018
  • Purpose: The endoscopic management of a fully covered self-expandable metal stent (SEMS) has been suggested for the primary treatment of patients with anastomotic leaks after total gastrectomy. Embedded stents due to tissue ingrowth and migration are the main obstacles in endoscopic stent management. Materials and Methods: The effectiveness and safety of endoscopic management were evaluated for anastomotic leaks when using a benign fully covered SEMS with an anchoring thread and thick silicone covering the membrane to prevent stent embedding and migration. We retrospectively reviewed the data of 14 consecutive patients with gastric cancer and anastomotic leaks after total gastrectomy treated from January 2009 to December 2016. Results: The technical success rate of endoscopic stent replacement was 100%, and the rate of complete leaks closure was 85.7% (n=12). The mean size of leaks was 13.1 mm (range, 3-30 mm). The time interval from operation to stent replacement was 10.7 days (range, 3-35 days) and the interval from stent replacement to extraction was 32.3 days (range, 18-49 days). The complication rate was 14.1%, and included a single jejunal ulcer and delayed stricture at the site of leakage. No embedded stent or migration occurred. Two patients died due to progression of pneumonia and septic shock 2 weeks after stent replacement. Conclusions: A benign fully covered SEMS with an anchoring thread and thick membrane is an effective and safe stent in patients with anastomotic leaks after total gastrectomy. The novelty of this stent is that it provides complete prevention of stent migration and embedding, compared with conventional fully covered SEMS.

절개사면에서의 보강단계별 사면안정성에 대한 해석적 연구 (An Analytical Study of Slope Stability to Reinforcement Stage in Cut Slope)

  • 강기천;송영석;홍원표;김태형
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.724-731
    • /
    • 2006
  • The purpose of this study is to estimate a landslide using the SLOPILE program from the slope reinforced by slope stability systems such as soil nailing and pile. To do this, cutting slope located at Donghae-Highway in Kwangwon-Do was considered. The behavior of slope was monitored for a long term by using instrumentation according to the reinforcement stages. The sequence of reinforcement stages was followed as pile installation, boring, soil nailing installation, anchoring and embankment. The result from this case study shows that the safety factor of slope depends on the reinforcement stage more or less.

  • PDF

Study on grout-free smart ground anchor using electromagnetic induction

  • Hyun-Seok Lee;Jong-Kyu Park;Jung-Tae Kim
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.531-542
    • /
    • 2024
  • This study proposes a ground anchor using electromagnetic induction and utilizes an extended structure using hinges and links and mounting and sensing using electromagnets. The aim is to secure the anchor force, excluding grout, and to secure various sensing capabilities, including ground behavior. We propose a design based on the drilling diameter of 150 mm, and the materials used were STS304 and Aluminum 6061-T6. Computerized analysis was performed to confirm structural safety and functional implementation. The pull-out experiment was conducted by simulating the bedrock environment on a model earthwork as an experiment to check whether anchor force was generated by the insertion and tension of the anchor. The environmental pollution of grout, the difficulty of removing strands, and the inability to check whether the anchor is seated, which were pointed out as disadvantages of the existing ground anchor, were solved. Therefore, this study suggest that it can be effectively utilized as a secure and monitored anchoring solution in eco-friendly construction practices, including the installation of landslide prevention barriers.