• Title/Summary/Keyword: Anchoring behavior

Search Result 63, Processing Time 0.025 seconds

Anchoring and Alignment Behavior of Liquid Crystals on Poly(vinyl cinnamate) Thin Films Treated in Various Ways

  • Lee, Taek-Joon;Hahm, Suk-Gyu;Lee, Seung-Woo;Ree, Moon-Hor
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.240-240
    • /
    • 2006
  • Thin films of poly(vinyl cinnamate) (PVCi) were prepared on indium tin oxide (ITO) glass and silicon substrates by conventional spin coating and subsequent drying process. The thicknesses of the films ranged 50-120 nm. The films' surface was treated by rubbing, ultraviolet exposure or their combinations in various ways with changing rubbing strength and exposure dose. These films were examined in detail in the aspects of surface morphology and chain orientation. Further, the anchoring and orientation behaviors of liquid crystals on the film surfaces were investigated. All the results will be discussed in detail.

  • PDF

Experimental Investigation of the Shear Behavior of RC Beams Strengthened with Glass Fiber-Steel Composite Plate(GSP) (유리섬유-강판 복합재료(GSP)로 보강된 RC 보의 전단거동에 관한 실험적 연구)

  • Jang, Jun-Hwan;Kim, Seong-Do;Cho, Baik-Soon;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.130-140
    • /
    • 2007
  • Fiber-sheet and steel-plate strengthening methods have been mainly used for strengthening the RC structures. However, recently the application of these two methods have dramatically decreased due to premature debonding failure between concrete surface and fiber-sheet and heavy self-weight of steel-plate. This article presents experimental results of shear behavior in RC beams strengthened with GSP(Glass fiber-Steel composite Plate). The thin steel plate in GSP makes usage of the anchoring system possible, which could delay or prevent the premature debonding failure. Three reference beams and 60 strengthened beams with GSP were tested. The experimental results showed that strengthened beams with GSP considerably increased in shear capacity compared with the reference beams.

Hysteretic Behavior of Wide Beam-Column joint (외부 넓은 보-기둥 접합부의 이력거동에 관한 연구)

  • Seo Soo-Yeon;Kim Jong-Sun;Yoon Yong-Dae;Lee Woo-Jin;Kim Sang-Sik;Yoon Seung-Joe
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.623-626
    • /
    • 2004
  • The purpose of this paper is to study the effect of longitudinal reinforcement for anchoring in the wide beam column joint as wall as the contribution of depth of spandrel beam to hysteretic behavior of the wide beam column joint. From the test it was shown that the specimen with anchorage in the joint had higher strength than the specimen with normal hook anchorage. Specimen with debonded reinforcement at out of Id from column face failed showing moved plastic hinge and less strength than normal specimen. However, the dissipated energy was increased $11\%$.

  • PDF

Liquid crystal alignment on patterned-alignment films

  • Lias, Jais Bin;Oo, Thet Naing;Yazawa, Tomohiro;Kimura, Munehiro;Akahane, Tadashi
    • Journal of Information Display
    • /
    • v.12 no.2
    • /
    • pp.101-107
    • /
    • 2011
  • To come up with a bistable liquid crystal (LC) device using unpolarized UV light, single-step laser patterning on a photoalignment layer using a photomask was proposed to achieve an equilibrium configuration of LC molecules in contact with a periodically patterned substrate. The patterns were formed by stripes of alternating random planar and homeotropic anchoring on a submicrometer scale in the order of $0.5{\mu}m$. Two possible configurations of bistable LC cells that can be obtained by combining a micropatterned surface formed with alternating random-planar- and homeotropic-alignment with planar- or homeotropic-alignment surfaces were proposed. The alignment properties of the two proposed models were investigated, along with the microscopic switching behavior of micropatterned nematic LC cells.

Structural Behavior of Reinforced Concrete Beams using High Strength Shear Reinforcement (고강도 전단보강 철근을 사용한 철근콘크리트 보의 거동평가)

  • Choi, Im-Jun;Park, Jong-Wook;Hwang, Hyun-Bok;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.3-4
    • /
    • 2009
  • This study predicts the structural behavior of RC beams using high strength shear reinforcement and evaluates current design codes restricting the strength of shear reinforcement steel. Under the present design codes, the yield strength of shear reinforcement steel is restricted to 400MPa. In case that use high yield strength reinforcement steel, could incure heavily crack and deflection at the members of structure, and have not verified ductility capacity, fatigue resisting capacity, shear and torsion resisting capacity, anchoring capacity and seismic capacity. To this end, we evaluate structural behavior of reinforced concrete beams using high strength shear reinforcement.

  • PDF

A Study on the Limit of Anchor Dragging for Ship at Anchor( II ) (묘박 중인 선박의 주묘 한계에 관한 연구( II ))

  • Bae, Suk-Han;Jung, Yun-Chul;Kim, Se-Won;Yun, Jong-Hwui;Lee, Yun-Sok;Nguyen, Phung-Hung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.173-179
    • /
    • 2005
  • In succession to previous study(A Study on the Limit of Anchor Dragging for Ship at Anchor sim I), the experiment of anchor dragging by ship handling simulator was performed to investigate the anchoring stability of ship at anchor in this study. The purpose of this experiment is to check the behavior charateristics of ship being dragged and the limit of anchor dragging for ship at anchor. A small tanker ship, which had been anchored in Jinhae Bay when the typhoon MAEMI passed on September 2003, was chosen as model ship for the experiment of anchor dragging and the result of experiment was confirmed to be very similar to the result of theoretical review and field report.

  • PDF

Axial Load Behavior of Concrete Cylinders Confined with Fiber-Sheet and Steel-Plate Composites Plate (FSP) (섬유-강판 복합플레이트로 보강된 콘크리트 압축부재의 압축성능)

  • Cho, Baik-Soon;Choi, Eunsoo;Chung, Young-Soo;Kim, Yeon-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.331-340
    • /
    • 2011
  • The application of newly developed fiber-sheet and steel-plate composite plate (FSP) as a means of improving strength and ductility capacity of concrete cylinders under axial compression load through confinement is investigated experimentally in this study. An experimental investigation involves axial load tests of two types of FSP strengthening material, two anchoring methods, and three concrete strengths. The FSP-confined cylinder tests showed that FSP provided a substantial gain in compressive strength and deformability. The performance of FRP-confined cylinders was influenced by type of the FSP strengthening material, the anchoring method, and concrete compressive strength. The FSP failure strains obtained from FSP-confined cylinder tests were higher than those from FRP-confined cylinder tests. The magnitude of FSP failure strain was related to the FSP composite effectiveness. The effects of FSP confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, radial, and volumetric strains. From the observations obtained in this investigation, it is believed that FSP is one of the best solutions for the confinement of concrete compressive members.

A review on the NLP techniques for reducing anxiety in dental phobic patients (치과 공포증환자의 불안 경감을 위한 NLP기법에 대한 고찰)

  • Kwon, Won-Dal;Seol, Ki-Moon
    • The Journal of the Korean dental association
    • /
    • v.48 no.11
    • /
    • pp.829-840
    • /
    • 2010
  • In recent years, medical techniques have provided patients with various measures to improve their quality of life. For dental treatment, drug-mediated sedation techniques for relieving dental anxiety have been developed, but behavior control through drugmediation may be limited because of possible side effects, contraindications, and the additional expense to the patient. Many patients tend to avoid the treatment or are unwilling to accept it and this makes both patients and dentists feel pressured. The field of NLP application might alleviate this uncomfortableness. Recently, NLP has spread to the dental and medical field rapidly and has been used in surgical treatments as well as in direct psychotherapy. NLP techniques which could be applied to dental phobic patients are as follows. 1) anchoring, 2) dissociation, 3) submodality change, 4) time line threapy, 5) swish pattern, 6) six step reframing, 7) parts integration, 8) modeling and imagination and so on. The aim of this study is to examine the strategy of NLP psychology so that dental phobic patients can be treated efficiently and effectively by the application of behavior management. Through NLP, patients can be induced to have more positive attitudes and experiences in future dental treatment.

Study on bond behavior of steel reinforced high strength concrete after high temperatures

  • Chen, Zongping;Zhou, Ji;Wang, Xinyue
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.113-125
    • /
    • 2020
  • This paper presents experimental results on bond-slip behavior of steel reinforced high-strength concrete (SRHC) after exposure to elevated temperatures. Three parameters were considered in this test: (a) high temperatures (i.e., 20℃, 200℃, 400℃, 600℃, 800℃); (b) concrete strength (i.e., C60, C70, C80); (c) anchorage length (i.e., 250 mm, 400 mm). A total of 17 SRHC specimens subjected to high temperatures were designed for push out test. The load-slip curves at the loading end and free end were obtained, the influence of various variation parameters on the ultimate bond strength and residual bond strength was analyzed, in addition, the influence of elevated temperatures on the invalidation mechanism was researched in details. Test results show that the shapes of load-slip curves at loading ends and free ends are similar. The ultimate bond strength and residual bond strength of SRHC decrease first and then recover partly with the temperature increasing. The bond strength is proportional to the concrete strength, and the bond strength is proportional to the anchoring length when the temperature is low, while the opposite situation occurs when the temperature is high. What's more, the bond damage of specimens with lower temperature develops earlier and faster than the specimens with higher temperature. From these experimental findings, the bond-slip constitutive formula of SRHC subjected to elevated temperatures is proposed, which fills well with test data.

Impact of Human Mobility on Social Networks

  • Wang, Dashun;Song, Chaoming
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.100-109
    • /
    • 2015
  • Mobile phone carriers face challenges from three synergistic dimensions: Wireless, social, and mobile. Despite significant advances that have been made about social networks and human mobility, respectively, our knowledge about the interplay between two layers remains largely limited, partly due to the difficulty in obtaining large-scale datasets that could offer at the same time social and mobile information across a substantial population over an extended period of time. In this paper, we take advantage of a massive, longitudinal mobile phone dataset that consists of human mobility and social network information simultaneously, allowing us to explore the impact of human mobility patterns on the underlying social network. We find that human mobility plays an important role in shaping both local and global structural properties of social network. In contrast to the lack of scale in social networks and human movements, we discovered a characteristic distance in physical space between 10 and 20 km that impacts both local clustering and modular structure in social network. We also find a surprising distinction in trajectory overlap that segments social ties into two categories. Our results are of fundamental relevance to quantitative studies of human behavior, and could serve as the basis of anchoring potential theoretical models of human behavior and building and developing new applications using social and mobile technologies.