• Title/Summary/Keyword: Anchorage

Search Result 848, Processing Time 0.029 seconds

간접 골성고정원(indirect skeletal anchorage)을 이용한 상악구치 압하

  • Chun, Youn-Sic;Chang, Yeon-Joo
    • The Journal of the Korean dental association
    • /
    • v.42 no.1 s.416
    • /
    • pp.7-14
    • /
    • 2004
  • Molar extrusion is a quite common problem in prosthodontic patients. It is caused due to the loss or infraocclusion of opposing teeth. A more conservative approach than reduction of the coronal part of extruded tooth is to intrude the malaligned molar orthodontically. Several authors have presented the cases of molar intrusion, by cither removable or fixed appliances. However, the design of those appliances was complex so that many teeth were included as an anchorage unit. This increased the patient's discomfort inevitably. Moreover, the results could be unpredictable. Instead of these conventional methods, skeletal anchorage has been suggested for ideal force system to intrude a molar without any side effects. Many recent clinical reports presented the cases using microscrew or miniplate as a direct anchorage, which included some limitation. The purpose of this report is to introduce the indirect skeletal anchorage for intrusion of extruded maxillary molar.

  • PDF

Material and geometric properties of hoop-type PZT interface for damage-sensitive impedance responses in prestressed tendon anchorage

  • Dang, Ngoc-Loi;Pham, Quang-Quang;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.129-155
    • /
    • 2022
  • In this study, parametric analyses on a hoop-type PZT (lead-zirconate-titanate) interface are performed to estimate the effects of the PZT interface's materials and geometries on sensitivities of impedance responses under strand breakage. The paper provides a guideline for installing the PZT interface suitable in tendon anchorages for damage-sensitive impedance signatures. Firstly, the concept of the PZT interface-based impedance monitoring technique in prestressed tendon anchorage is briefly described. A FE (finite element) analysis is conducted on a multi-strands anchorage equipped with a hoop-type PZT interface for analyzing materials and geometric effects. Various material properties, geometric sizes of the interface, and PZT sensor are simulated under two states of prestressing force for acquiring impedance responses. Changes in impedance signals are statistically quantified to analyze the effect of these factors on damage-sensitive impedance monitoring in the tendon anchorage. Finally, experimental analyses are performed to demonstrate the effects of materials and geometrical properties of the PZT interface on damage-sensitive impedance monitoring.

Shear Performance of Wood-Concrete Composite II - Shear Performance with Different Anchorage Length of Steel Rebar in Concrete -

  • Lee, Sang-Joon;Eom, Chang-Deuk;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.327-334
    • /
    • 2012
  • Wood and concrete show significantly different physical properties, and it need to be firstly understood for using wood-concrete composite. This study is performed for compensating this and effective hybridization of wood and concrete. This research in planned for wood-concrete composite after previous research which deals the shear performance with different anchorage length of steel rebar in wood. Yield mode and reference design value (Z) were derived using EYM (European Yield Model). And the yield mode changed before and after anchorage length of 10~15 mm - $I_s$ mode to IV mode. There was not increasing tendency of shear performance with increased anchorage length for over 20 mm of anchorage in concrete. And wood composite shows 65% and 93% on initial stiffness and yield load respectively compared with the wood-concrete composite. Wood-concrete composite showed brittle failure after yield point while wood-to-wood composite showed ductile failure.

Study of exterior beam-column joint with different joint core and anchorage details under reversal loading

  • Rajagopal, S.;Prabavathy, S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.809-825
    • /
    • 2013
  • In the present study, in reinforced concrete structures, beam-column connections are one of the most critical regions in areas with seismic susceptibility. Proper anchorage of reinforcement is vital to enhance the performance of beam-column joints. Congestion of reinforcement and construction difficulties are reported frequently while using conventional reinforcement detailing in beam-column joints of reinforced concrete structures. An effort has been made to study and evaluate the performance of beam-column joints with joint detailing as per ACI-352 (mechanical anchorage), ACI-318 (conventional hooks bent) and IS-456(full anchorage conventional hooks bent) along with confinement as per IS-13920 and without confinement. Apart from finding solutions for these problems, significant improvements in seismic performance, ductility and strength were observed while using mechanical anchorage in combination with X-cross bars for less seismic prone areas and X-cross bar plus hair clip joint reinforcement for higher seismic prone areas. To evaluate the performances of these types of anchorages and joint details, the specimens were assembled into four groups, each group having three specimens have been tested under reversal loading and the results are presented in this paper.

A Study on Stress Properties for Cable Anchorage zone of Cable Stayed Prestressed Concrete Box Girder (케이블로 지지된 프리스트레스트 콘크리트 박스거더 정착부의 응력특성에 관한 연구)

  • Tae, Ghi-Ho;Kim, Doo-Hwan;Byun, Yun-Joo;Song, Kwan Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.84-92
    • /
    • 2012
  • Anchorage zone in prestressed concrete cable stayed bridges is very important area due to the more accurate analysis is needed to estimate the behavior. In the study, since the cable anchorage zone in the prestressed concrete cable-stayed bridge is subject to a large amount of concentrated tendon forces, it shows very complicated stress distributions and causes a serious local cracks. Accordingly, It is necessary to investigate the parameters of affecting the stress properties, such as the cable inclination, the position of anchor plate, the modeling method and the three dimensional effect. The tensile stress distribution of anchorage zone is compared to the actual design condition by varing the stiffness of spring element in the local modeling and an appropriate position of anchor plate is determined. These results would be elementary data to the stress state of anchorage zone and more efficient design.

New reinforcement algorithms in discontinuous deformation analysis for rock failure

  • Chen, Yunjuan;Zhu, Weishen;Li, Shucai;Zhang, Xin
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.787-803
    • /
    • 2016
  • DDARF (Discontinuous Deformation Analysis for Rock Failure) is a numerical algorithm for simulating jointed rock masses' discontinuous deformation. While its reinforcement simulation is only limited to end-anchorage bolt, which is assumed to be a linear spring simply. Here, several new reinforcement modes in DDARF are proposed, including lining reinforcement, full-length anchorage bolt and equivalent reinforcement. In the numerical simulation, lining part is assigned higher mechanical strength than surrounding rock masses, it may include multiple virtual joints or not, depending on projects. There must be no embedding or stretching between lining blocks and surrounding blocks. To realize simulation of the full-length anchorage bolt, at every discontinuity passed through the bolt, a set of normal and tangential spring needs to be added along the bolt's axial and tangential direction. Thus, bolt's axial force, shearing force and full-length anchorage effect are all realized synchronously. And, failure criterions of anchorage effect are established for different failure modes. In the meantime, from the perspective of improving surrounding rock masses' overall strength, a new equivalent and tentative simulation method is proposed, it can save calculation storage and improve efficiency. Along the text, simulation algorithms and applications of these new reinforcement modes in DDARF are given.

Experimental investigation and design method of the general anchorage zone in the ring beam of prestressed concrete containment vessels

  • Chang Wu;Tao Chen;Yanli Su;Tianyun Lan;Shaoping Meng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.485-497
    • /
    • 2024
  • Ring beam is the main anchorage zone of the tendons in the nuclear power prestressed concrete containment vessel (PCCV). Its safety is crucial and has a great influence on the overall performance of PCCV. In this paper, two half-scale ring beams were tested to investigate the mechanical performance of the anchorage zone in the PCCV under multidirectional pressure. The effect of working condition with different tension sequences was investigated. Additionally, a half axisymmetric plane model of the containment was established by the finite element simulation to further predict the experimental responses and propose the local reinforcement design in the anchorage zone of the ring beam. The results showed that the ultimate load of the specimens under both working conditions was greater than the nominal ultimate tensile force. The original reinforcement design could meet the bearing capacity requirements, but there was still room for optimization. The ring beam was generally under pressure in the anchorage area, while the splitting force appeared in the under-anchor area, and the spalling force appeared in the corner area of the tooth block, which could be targeted for local strengthening design.

Zygoma-gear appliance for intraoral upper molar distalization (Zygoma-gear를 이용한 구치부 후방이동을 통한 비발치 치험례)

  • Nur, Metin;Bayram, Mehmet;Pampu, Alper
    • The korean journal of orthodontics
    • /
    • v.40 no.3
    • /
    • pp.195-206
    • /
    • 2010
  • The aim of this report is to present an intraoral upper molar distalization system supported with zygomatic anchorage plates (Zygoma-gear Appliance, ZGA). This system was used for a 16-year-old female patient with a Class II molar relationship requiring molar distalization. The system consisted of bilateral zygomatic anchorage plates, an inner-bow and heavy intraoral elastics. Distalization of the upper molars was achieved in 3 months and the treatment results were evaluated from lateral cephalometric radiographs. According to the results of the cephalometric analysis, the maxillary first molars showed a distalization of 4 mm, associated with a distal axial inclination of $4.5^{\circ}$. The results of this study show that an effective upper molar distalization without anchorage loss can be achieved in a short time using the ZGA. We suggest that this new system may be used in cases requiring molar distalization in place of extraoral appliances.

Experimental and numerical study on tensile capacity of composite cable-girder anchorage joint

  • Xuefei Shi;Yuzhuo Zhong;Haiying Ma;Ke Hu;Zhiquan Liu;Cheng Zeng
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.215-230
    • /
    • 2023
  • Cable-girder anchorage joint is the critical part of cable-supported bridges. Tensile-plate anchorage (TPA) is one of the most commonly used types of cable-girder anchorage joints in steel girder cable-supported bridges. In recent years, it has been proposed by bridge designers to apply TPA to concrete girder cable-supported bridges to form composite cable-girder anchorage joint (CCGAJ). In this paper, the mechanical performance of CCGAJ under tensile force is studied through experimental and numerical analyses. Firstly, the effects of the external prestressing (EP) and the bearing plate (BP) on the mechanical performance of CCGAJ were investigated through three tests. Then, finite element model was established for parametrical study, and was verified by the experimental results. Then, the effects of shear connector forms, EP, BP, vertical rebar rate, and perforated rebar rate on the tensile capacity of CCGAJ were investigated through numerical analyses. The results show that the tensile capacity of CCGAJ depends on the first row of PR. The failure mode of CCGAJ using headed stud connectors is to form a shear failure surface at the end of the studs while the failure mode using PBLs is similar to the bending of a deep girder. Finally, based on the strut-and-tie model (STM), a calculation method for CCGAJ tensile capacity was proposed, which has a high accuracy and can be used to calculate the tensile capacity of CCGAJ.

Effect of Bond Length and Web Anchorage on Flexural Strength in RC Beams Strengthened with CFRP Plate (부착길이와 복부정착이 CFRP판으로 보강된 RC 보의 휨 보강효과에 미치는 영향)

  • 박상렬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.645-652
    • /
    • 2002
  • This paper presents the flexural behavior and strengthening effect of reinforced concrete beams bonded with carbon FRP plate. Parameters involved in this experimental study were plate bond length and sheet web anchorage length. Test beams were strengthened with FRP plate on the soffit and anchored with FRP sheet on the web. In general, strengthened beams with no web anchorage were failed by concrete cover failure along the longitudinal reinforcement. On the other hand, strengthened beams with web anchorage were finally failed by delamination shear failure within concrete after breaking of CFRP sheet wrapping around web. The ultimate load and deflection of strengthened beams increased with an increased bond length of FRP plate. Also, the ultimate load and deflection increased with an increased anchorage length of FRP sheet. Particularly, the strengthened beams with web anchorage maintained high ultimate load resisting capacity until very large deflection. The shape of strain distribution of CFRP plate along beam was very similar to that of bending moment diagram. Therefore, an assumption of constant shear stress in shear span could be possible in the analysis of delamination shear stress of concrete. In the case of full bond length, the ultimate resisting shear stress provided by concrete and FRP sheet Increased with an increase of web anchorage length. In the resisting shear force, a portion of the shear force was provided by FRP anchorage sheet.