• Title/Summary/Keyword: Anchor free method

Search Result 21, Processing Time 0.018 seconds

Multi-scale face detector using anchor free method

  • Lee, Dong-Ryeol;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.47-55
    • /
    • 2020
  • In this paper, we propose one stage multi-scale face detector based Fully Convolution Network using anchor free method. Recently almost all state-of-the-art face detectors which predict location of faces using anchor-based methods rely on pre-defined anchor boxes. However this face detectors need to hyper-parameters and additional computation in training. The key idea of the proposed method is to eliminate hyper-parameters and additional computation using anchor free method. To do this, we apply two ideas. First, by eliminating the pre-defined set of anchor boxes, we avoid the additional computation and hyper-parameters related to anchor boxes. Second, our detector predicts location of faces using multi-feature maps to reduce foreground/background imbalance issue. Through Quantitative evaluation, the performance of the proposed method is evaluated and analyzed. Experimental results on the FDDB dataset demonstrate the effective of our proposed method.

Analysis of Dynamically Penetrating Anchor based on Coupled Eulerian-Lagrangian (CEL) Method (Coupled Eulerian-Lagrangian (CEL) 방법을 이용한 Dynamically Penetrating Anchor의 동적 거동 분석)

  • Kim, Youngho;Jeong, Sang-Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.895-906
    • /
    • 2014
  • A fundamental study of the dynamically penetrating anchor (DPA - colloquially known as torpedo anchor) embedded into deep seabed was conducted using measurement data and numerical approaches. Numerical simulation of such a structure penetration was often suffered by severe mesh distortion arising from very large soil deformation, complex contact condition and nonlinear soil behavior. In recent years, a Coupled Eulerian-Lagrangian method (CEL) has been used to solve geomechanical boundary value problems involving large deformations. In this study, 3D finite element analyses using the CEL formulation are carried out to simulate the construction process of dynamic anchors. Through comparisons with results of field measurements, the CEL method in the present study is in good agreement with the general trend observed by in-situ measurements and thus, predicts a realistic large deformation movement for the dynamic anchors by free-fall dropping, which the conventional FE method cannot. Additionally, the appropriate parametric studies needed for verifying the characteristic of dynamic anchor are also discussed.

Anchor Free Object Detection Continual Learning According to Knowledge Distillation Layer Changes (Knowledge Distillation 계층 변화에 따른 Anchor Free 물체 검출 Continual Learning)

  • Gang, Sumyung;Chung, Daewon;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.4
    • /
    • pp.600-609
    • /
    • 2022
  • In supervised learning, labeling of all data is essential, and in particular, in the case of object detection, all objects belonging to the image and to be learned have to be labeled. Due to this problem, continual learning has recently attracted attention, which is a way to accumulate previous learned knowledge and minimize catastrophic forgetting. In this study, a continaul learning model is proposed that accumulates previously learned knowledge and enables learning about new objects. The proposed method is applied to CenterNet, which is a object detection model of anchor-free manner. In our study, the model is applied the knowledge distillation algorithm to be enabled continual learning. In particular, it is assumed that all output layers of the model have to be distilled in order to be most effective. Compared to LWF, the proposed method is increased by 23.3%p mAP in 19+1 scenarios, and also rised by 28.8%p in 15+5 scenarios.

Shear Strength of Single Anchors in Uncracked and Unreinforced Concrete (비균열·무근콘크리트의 단일앵커 전단내력 평가)

  • Kim, Sung-Yong;Kim, Kyu-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.171-181
    • /
    • 2003
  • This study concerns the prediction of shear capacity, as governed by concrete breakout failure, concrete pryout failure and steel failure, of single anchors located close to free edge and located far from a free edge and installed in uncracked, unreinforced concrete. For this purpose, the methods to evaluate the shear capacity of the single anchors in concrete are summarized and the experimental data are compared with capacities by the two present methods: the method of ACI 349-90 and concrete capacity design (CCD) method.

An Accuracy Enhancement for Anchor Free Location in Wiresless Sensor Network (무선 센서 네트워크의 고정 위치에 대한 정확도 향상)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.77-87
    • /
    • 2018
  • Many researches have been focused on localization in WSNs. However, the solutions for localization in static WSN are hard to apply to the mobile WSN. The solutions for mobile WSN localization have the assumption that there are a significant number of anchor nodes in the networks. In the resource limited situation, these solutions are difficult in applying to the static and mobile mixed WSN. Without using the anchor nodes, a localization service cannot be provided in efficient, accurate and reliable way for mixed wireless sensor networks which have a combination of static nodes and mobile nodes. Also, accuracy is an important consideration for localization in the mixed wireless sensor networks. In this paper, we presented a method to satisfy the requests for the accuracy of the localization without anchor nodes in the wireless sensor networks. Hop coordinates measurements are used as an accurate method for anchor free localization. Compared to the other methods with the same data in the same category, this technique has better accuracy than other methods. Also, we applied a minimum spanning tree algorithm to satisfy the requests for the efficiency such as low communication and computational cost of the localization without anchor nodes in WSNs. The Java simulation results show the correction of the suggested approach in a qualitative way and help to understand the performance in different placements.

Comparative Study of Spiral Oblique Retinacular Ligament Reconstruction Techniques Using Either a Lateral Band or a Tendon Graft

  • Oh, Jae Yun;Kim, Jin Soo;Lee, Dong Chul;Yang, Jae Won;Ki, Sae Hwi;Jeon, Byung Joon;Roh, Si Young
    • Archives of Plastic Surgery
    • /
    • v.40 no.6
    • /
    • pp.773-778
    • /
    • 2013
  • Background In the management of mallet deformities, oblique retinacular ligament (ORL) reconstruction provides a mechanism for automatic distal interphalangeal (DIP) joint extension upon active proximal interphalangeal joint extension. The two variants of ORL reconstruction utilize either the lateral band or a free tendon graft. This study aims to compare these two surgical techniques and to assess any differences in functional outcome. As a secondary measure, the Mitek bone anchor and pull-in suture methods are compared. Methods A single-institutional retrospective review of ORL reconstruction was performed. The standard patient demographics, injury mechanism, type of ORL reconstruction, and pre/postoperative degree of extension lag were collected for the 27 cases identified. The cases were divided into lateral band (group A, n=15) and free tendon graft groups (group B, n=12). Group B was subdivided into the pull-in suture technique (B-I) and the Mitek bone anchor method (B-II). Results Overall, ORL reconstructions had improved the mean DIP extension lag by $10^{\circ}$ (P=0.027). Neither the reconstructive technique choice nor bone fixation method identified any statistically meaningful difference in functional outcome (P=0.51 and P=0.83, respectively). Soft-tissue injury was associated with $30.8^{\circ}$ of improvement in the extension lag. The most common complications were tendon adhesion and rupture. Conclusions The choice of the ORL reconstructive technique or the bone anchor method did not influence the primary functional outcome of extension lag in this study. Both lateral band and free tendon graft ORL reconstructions are valid treatment methods in the management of chronic mallet deformity.

A Robust Real-Time License Plate Recognition System Using Anchor-Free Method and Convolutional Neural Network

  • Kim, Dae-Hoon;Kim, Do-Hyeon;Lee, Dong-Hoon;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2022
  • With the recent development of intelligent transportation systems, car license plate recognition systems are being used in various fields. Such systems need to guarantee real-time performance to recognize the license plate of a driving car. Also, they should keep a high recognition rate even in problematic situations such as small license plates in low-resolution and unclear image due to distortion. In this paper, we propose a real-time car license plate recognition system that improved processing speed using object detection algorithm based on anchor-free method and text recognition algorithm based on Convolutional Neural Network(CNN). In addition, we used Spatial Transformer Network to increase the recognition rate on the low resolution or distorted images. We confirm that the proposed system is faster than previously existing car license plate recognition systems and maintains a high recognition rate in a variety of environment and quality images because the proposed system's recognition rate is 93.769% and the processing speed per image is about 0.006 seconds.

Numerical Analysis of Anchored In-situ wall using Back-Analysis Technique (역해석기법을 이용한 앵커지지 흙막이벽체의 수치해석)

  • Woo, Je-il;Chung, Dae-seouk
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Purpose: In this study, the safety management method supplementing the field displacement prediction management technique was performed using the numerical analysis. Method: The analysis was performed using MIDAS GTS / NX program based on the finite element method (FEM). Approximating the displacement data and displacement trend as close as possible to the collapse site, the collapse prevention method was applied after estimating the cause of collapse. Result: The cause of the collapse was estimated by soil parametar, one of the results obtained by performing the Back-analysis. As a result, it was confirmed that the free length of the anchor was insufficient, and the free length of the anchor was changed by the collapse prevention method, and the displacement was significantly reduced. Conclusion: If Back-analysis technique is used in field management, estimating the cause of collapse and suggesting a reasonable collapse prevention measure will help to reduce collase.

Simplified Formulae for Free Earth Supported Anchored Sheet-Pile Wall (앵커식 자유지지 널말뚝벽의 설계용 간편식)

  • Kim, Khi-Woong;Kwon, Min-Seok;Paik, Young-Shik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.37-44
    • /
    • 2002
  • Sheet piles are often used to build continuous walls for the waterfront structures, and also used for some temporary structures, such as the braced cuts. Sheet pile walls may be divided into two basic categories that is cantilever and anchored. Stock(1992) developed an expedient format for determining the depth, maximum bending moment and anchor force of sheet pile wall for cantilever and free earth supported anchored wall. But, that is useful only in case that water table exists above the dredge line. In this study, a simplified formulae was developed for the design of the anchored free earth supported sheet pile wall both in sand and clay by solving the derived equations and regression analysis. It can be used whether the ground water table is above or under the dredge line.

  • PDF

Seismic Design of Anchored Sheet Pile Walls in c-0 Soils (점성토 지반에 설치되는 앵커로 지지된 널말뚝의 내진설계)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-58
    • /
    • 1992
  • In the present study, an analytical solution method is proposed for the seismic design of anchored sheet pile walls used in port. The proposed analytical method deals with the anchored sheet pile walls with free earth support in sands and c- U soils, including the effects of hydrodynamic pressures and a condition of steady seepage between the two water levels. Also, the effects of various parameters(differential in water levels, anchor position, wall friction angle, dredge line slope, cohesion, adhesion etc.) on embedment depth, anchor force, and maximum bending moment are analyzed using the proposed method. In addition, comparisons between different definitions of safety factor are made, and necessary considerations required in the design of anchored sheet pile walls are examined.

  • PDF