• Title/Summary/Keyword: Analytics Results

Search Result 282, Processing Time 0.025 seconds

e-Learning Course Reviews Analysis based on Big Data Analytics (빅데이터 분석을 이용한 이러닝 수강 후기 분석)

  • Kim, Jang-Young;Park, Eun-Hye
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.423-428
    • /
    • 2017
  • These days, various and tons of education information are rapidly increasing and spreading due to Internet and smart devices usage. Recently, as e-Learning usage increasing, many instructors and students (learners) need to set a goal to maximize learners' result of education and education system efficiency based on big data analytics via online recorded education historical data. In this paper, the author applied Word2Vec algorithm (neural network algorithm) to find similarity among education words and classification by clustering algorithm in order to objectively recognize and analyze online recorded education historical data. When the author applied the Word2Vec algorithm to education words, related-meaning words can be found, classified and get a similar vector values via learning repetition. In addition, through experimental results, the author proved the part of speech (noun, verb, adjective and adverb) have same shortest distance from the centroid by using clustering algorithm.

Building Energy Time Series Data Mining for Behavior Analytics and Forecasting Energy consumption

  • Balachander, K;Paulraj, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.1957-1980
    • /
    • 2021
  • The significant aim of this research has always been to evaluate the mechanism for efficient and inherently aware usage of vitality in-home devices, thus improving the information of smart metering systems with regard to the usage of selected homes and the time of use. Advances in information processing are commonly used to quantify gigantic building activity data steps to boost the activity efficiency of the building energy systems. Here, some smart data mining models are offered to measure, and predict the time series for energy in order to expose different ephemeral principles for using energy. Such considerations illustrate the use of machines in relation to time, such as day hour, time of day, week, month and year relationships within a family unit, which are key components in gathering and separating the effect of consumers behaviors in the use of energy and their pattern of energy prediction. It is necessary to determine the multiple relations through the usage of different appliances from simultaneous information flows. In comparison, specific relations among interval-based instances where multiple appliances use continue for certain duration are difficult to determine. In order to resolve these difficulties, an unsupervised energy time-series data clustering and a frequent pattern mining study as well as a deep learning technique for estimating energy use were presented. A broad test using true data sets that are rich in smart meter data were conducted. The exact results of the appliance designs that were recognized by the proposed model were filled out by Deep Convolutional Neural Networks (CNN) and Recurrent Neural Networks (LSTM and GRU) at each stage, with consolidated accuracy of 94.79%, 97.99%, 99.61%, for 25%, 50%, and 75%, respectively.

Study on the Academic Competency Assessment of Herbology Test using Rasch Model (라쉬 모델을 사용한 본초학 시험의 학업역량 분석 연구)

  • Chae, Han;Lee, Soo Jin;Han, Chang-ho;Cho, Young Il;Kim, Hyungwoo
    • The Journal of Korean Medicine
    • /
    • v.43 no.2
    • /
    • pp.27-41
    • /
    • 2022
  • Objectives: There should be an objective analysis on the academic competency for incorporating Computer-based Test (CBT) in the education of traditional Korean medicine (TKM). However, the Item Response Theory (IRT) for analyzing latent competency has not been introduced for its difficulty in calculation, interpretation and utilization. Methods: The current study analyzed responses of 390 students of 8 years to the herbology test with 14 items by utilizing Rasch model, and the characteristics of test and items were evaluated by using characteristic curve, information curve, difficulty, academic competency, and test score. The academic competency of the students across gender and years were presented with scale characteristic curve, Kernel density map, and Wright map, and examined based on T-test and ANOVA. Results: The estimated item, test, and ability parameters based on Rasch model provided reliable information on academic competency, and organized insights on students, test and items not available with test score calculated by the summation of item scores. The test showed acceptable validity for analyzing academic competency, but some of items revealed difficulty parameters to be modified with Wright map. The gender difference was not distinctive, however the differences between test years were obvious with Kernel density map. Conclusion: The current study analyzed the responses in the herbology test for measuring academic competency in the education of TKM using Rasch model, and structured analysis for competency-based Teaching in the e-learning era was suggested. It would provide the foundation for the learning analytics essential for self-directed learning and competency adaptive learning in TKM.

A Study on Activation Method of Website through Log Analysis -Focused on the website(MMWS) for research the Mediterranean Area- (로그 분석을 통한 웹사이트 활성화 방안에 대한 연구 - 지중해지역 연구를 위한 웹사이트(MMWS)를 중심으로 -)

  • Kang, Ji-Hoon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.907-916
    • /
    • 2017
  • Recently, various studies related to ICT convergence have been made. Recently, various studies related to ICT convergence have been made. In the academic field, the demand for ICT convergence is on the rise. For example, Digital Humanities and Area Informatics are representative. Area Studies means to study the culture of a specific area in an integrated way. In this regard, researchers who specialize in researching overseas area generally use websites to obtain information related to the area. The Multilingual Mediterranean Web Service System(MMWS), which is operated by the Institute for Mediterranean Studies of Busan University of Foreign Studies is a web site that provides professional and general information to researchers or ordinary people studying in the Mediterranean area among overseas area. In this paper, we analyzeoverseas web sites the MMWS and discuss how to activate web sites based on the analysis results. In details, it analyze MMWS through log analysis and use Google Analytics, a log analysis system provided by Google for analysis. Also study how to use ICT convergence contents as a website activation method.

A Study on Enhancing Personalization Recommendation Service Performance with CNN-based Review Helpfulness Score Prediction (CNN 기반 리뷰 유용성 점수 예측을 통한 개인화 추천 서비스 성능 향상에 관한 연구)

  • Li, Qinglong;Lee, Byunghyun;Li, Xinzhe;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.29-56
    • /
    • 2021
  • Recently, various types of products have been launched with the rapid growth of the e-commerce market. As a result, many users face information overload problems, which is time-consuming in the purchasing decision-making process. Therefore, the importance of a personalized recommendation service that can provide customized products and services to users is emerging. For example, global companies such as Netflix, Amazon, and Google have introduced personalized recommendation services to support users' purchasing decisions. Accordingly, the user's information search cost can reduce which can positively affect the company's sales increase. The existing personalized recommendation service research applied Collaborative Filtering (CF) technique predicts user preference mainly use quantified information. However, the recommendation performance may have decreased if only use quantitative information. To improve the problems of such existing studies, many studies using reviews to enhance recommendation performance. However, reviews contain factors that hinder purchasing decisions, such as advertising content, false comments, meaningless or irrelevant content. When providing recommendation service uses a review that includes these factors can lead to decrease recommendation performance. Therefore, we proposed a novel recommendation methodology through CNN-based review usefulness score prediction to improve these problems. The results show that the proposed methodology has better prediction performance than the recommendation method considering all existing preference ratings. In addition, the results suggest that can enhance the performance of traditional CF when the information on review usefulness reflects in the personalized recommendation service.

The Development of an Aggregate Power Resource Configuration Model Based on the Renewable Energy Generation Forecasting System (재생에너지 발전량 예측제도 기반 집합전력자원 구성모델 개발)

  • Eunkyung Kang;Ha-Ryeom Jang;Seonuk Yang;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.229-256
    • /
    • 2023
  • The increase in telecommuting and household electricity demand due to the pandemic has led to significant changes in electricity demand patterns. This has led to difficulties in identifying KEPCO's PPA (power purchase agreements) and residential solar power generation and has added to the challenges of electricity demand forecasting and grid operation for power exchanges. Unlike other energy resources, electricity is difficult to store, so it is essential to maintain a balance between energy production and consumption. A shortage or overproduction of electricity can cause significant instability in the energy system, so it is necessary to manage the supply and demand of electricity effectively. Especially in the Fourth Industrial Revolution, the importance of data has increased, and problems such as large-scale fires and power outages can have a severe impact. Therefore, in the field of electricity, it is crucial to accurately predict the amount of power generation, such as renewable energy, along with the exact demand for electricity, for proper power generation management, which helps to reduce unnecessary power production and efficiently utilize energy resources. In this study, we reviewed the renewable energy generation forecasting system, its objectives, and practical applications to construct optimal aggregated power resources using data from 169 power plants provided by the Ministry of Trade, Industry, and Energy, developed an aggregation algorithm considering the settlement of the forecasting system, and applied it to the analytical logic to synthesize and interpret the results. This study developed an optimal aggregation algorithm and derived an aggregation configuration (Result_Number 546) that reached 80.66% of the maximum settlement amount and identified plants that increase the settlement amount (B1783, B1729, N6002, S5044, B1782, N6006) and plants that decrease the settlement amount (S5034, S5023, S5031) when aggregating plants. This study is significant as the first study to develop an optimal aggregation algorithm using aggregated power resources as a research unit, and we expect that the results of this study can be used to improve the stability of the power system and efficiently utilize energy resources.

Combining Object Detection and Hand Gesture Recognition for Automatic Lighting System Control

  • Pham, Giao N.;Nguyen, Phong H.;Kwon, Ki-Ryong
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.329-332
    • /
    • 2019
  • Recently, smart lighting systems are the combination between sensors and lights. These systems turn on/off and adjust the brightness of lights based on the motion of object and the brightness of environment. These systems are often applied in places such as buildings, rooms, garages and parking lot. However, these lighting systems are controlled by lighting sensors, motion sensors based on illumination environment and motion detection. In this paper, we propose an automatic lighting control system using one single camera for buildings, rooms and garages. The proposed system is one integration the results of digital image processing as motion detection, hand gesture detection to control and dim the lighting system. The experimental results showed that the proposed system work very well and could consider to apply for automatic lighting spaces.

Topic Modeling with Deep Learning-based Sentiment Filters (감정 딥러닝 필터를 활용한 토픽 모델링 방법론)

  • Choi, Byeong-Seol;Kim, Namgyu
    • The Journal of Information Systems
    • /
    • v.28 no.4
    • /
    • pp.271-291
    • /
    • 2019
  • Purpose The purpose of this study is to propose a methodology to derive positive keywords and negative keywords through deep learning to classify reviews into positive reviews and negative ones, and then refine the results of topic modeling using these keywords. Design/methodology/approach In this study, we extracted topic keywords by performing LDA-based topic modeling. At the same time, we performed attention-based deep learning to identify positive and negative keywords. Finally, we refined the topic keywords using these keywords as filters. Findings We collected and analyzed about 6,000 English reviews of Gyeongbokgung, a representative tourist attraction in Korea, from Tripadvisor, a representative travel site. Experimental results show that the proposed methodology properly identifies positive and negative keywords describing major topics.

Supramax Bulk Carrier Market Forecasting with Technical Indicators and Neural Networks

  • Lim, Sang-Seop;Yun, Hee-Sung
    • Journal of Navigation and Port Research
    • /
    • v.42 no.5
    • /
    • pp.341-346
    • /
    • 2018
  • Supramax bulk carriers cover a wide range of ocean transportation requirements, from major to minor bulk cargoes. Market forecasting for this segment has posed a challenge to researchers, due to complexity involved, on the demand side of the forecasting model. This paper addresses this issue by using technical indicators as input features, instead of complicated supply-demand variables. Artificial neural networks (ANN), one of the most popular machine-learning tools, were used to replace classical time-series models. Results revealed that ANN outperformed the benchmark binomial logistic regression model, and predicted direction of the spot market with more than 70% accuracy. Results obtained in this paper, can enable chartering desks to make better short-term chartering decisions.

Methodological Implications of Employing Social Bigdata Analysis for Policy-Making : A Case of Social Media Buzz on the Startup Business (빅데이터를 활용한 정책분석의 방법론적 함의 : 기회형 창업 관련 소셜 빅데이터 분석 사례를 중심으로)

  • Lee, Young-Joo;Kim, Dhohoon
    • Journal of Information Technology Services
    • /
    • v.15 no.1
    • /
    • pp.97-111
    • /
    • 2016
  • In the creative economy paradigm, motivation of the opportunity based startup is a continuous concern to policy-makers. Recently, bigdata anlalytics challenge traditional methods by providing efficient ways to identify social trend and hidden issues in the public sector. In this study the authors introduce a case study using social bigdata analytics for conducting policy analysis. A semantic network analysis was employed using textual data from social media including online news, blog, and private bulletin board which create buzz on the startup business. Results indicates that each media has been forming different discourses regarding government's policy on the startup business. Furthermore, semantic network structures from private bulletin board reveal unexpected social burden that hiders opening a startup, which has not been found in the traditional survey nor experts interview. Based on these results, the authors found the feasibility of using social bigdata analysis for policy-making. Methodological and practical implications are discussed.