• 제목/요약/키워드: Analytics

검색결과 740건 처리시간 0.03초

Organizing an in-class hackathon to correct PDF-to-text conversion errors of Genomics & Informatics 1.0

  • Kim, Sunho;Kim, Royoung;Nam, Hee-Jo;Kim, Ryeo-Gyeong;Ko, Enjin;Kim, Han-Su;Shin, Jihye;Cho, Daeun;Jin, Yurhee;Bae, Soyeon;Jo, Ye Won;Jeong, San Ah;Kim, Yena;Ahn, Seoyeon;Jang, Bomi;Seong, Jiheyon;Lee, Yujin;Seo, Si Eun;Kim, Yujin;Kim, Ha-Jeong;Kim, Hyeji;Sung, Hye-Lynn;Lho, Hyoyoung;Koo, Jaywon;Chu, Jion;Lim, Juwon;Kim, Youngju;Lee, Kyungyeon;Lim, Yuri;Kim, Meongeun;Hwang, Seonjeong;Han, Shinhye;Bae, Sohyeun;Kim, Sua;Yoo, Suhyeon;Seo, Yeonjeong;Shin, Yerim;Kim, Yonsoo;Ko, You-Jung;Baek, Jihee;Hyun, Hyejin;Choi, Hyemin;Oh, Ji-Hye;Kim, Da-Young;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • 제18권3호
    • /
    • pp.33.1-33.7
    • /
    • 2020
  • This paper describes a community effort to improve earlier versions of the full-text corpus of Genomics & Informatics by semi-automatically detecting and correcting PDF-to-text conversion errors and optical character recognition errors during the first hackathon of Genomics & Informatics Annotation Hackathon (GIAH) event. Extracting text from multi-column biomedical documents such as Genomics & Informatics is known to be notoriously difficult. The hackathon was piloted as part of a coding competition of the ELTEC College of Engineering at Ewha Womans University in order to enable researchers and students to create or annotate their own versions of the Genomics & Informatics corpus, to gain and create knowledge about corpus linguistics, and simultaneously to acquire tangible and transferable skills. The proposed projects during the hackathon harness an internal database containing different versions of the corpus and annotations.

사용자 니즈 기반의 챗봇 개발 프로세스: 디자인 사고방법론을 중심으로 (Development Process for User Needs-based Chatbot: Focusing on Design Thinking Methodology)

  • 김무성;서봉군;박도형
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.221-238
    • /
    • 2019
  • 최근, 기업 및 공공기관에서는 고객 상담과 응대 분야에 챗봇(Chatbot)서비스를 적극적으로 도입하고 있다. 챗봇 서비스의 도입은 기업이나 기관에게 있어서 인건비 절감 효과를 가져올 뿐만 아니라 고객과의 빠른 커뮤니케이션 효과를 기대할 수 있다. 데이터 분석 기술의 발전과 인공지능 기술의 고도화는 이런 챗봇 서비스의 성장을 견인하고 있다. 하지만 기술중심으로 개발된 챗봇은 사용자가 내재적으로 원하는 바와 괴리가 있을 수 있으므로, 챗봇이 단순히 기술의 영역이 아닌 사용자 경험의 영역에서 다루어질 필요가 있다. 본 연구는 사용자 경험 분야의 대표적 방법론인 디자인 사고 접근법을 챗봇 개발에 적용하여, 사용자 니즈 기반의 챗봇 개발 프로세스를 제안하고자 한다. 사용자 관찰을 통해 팩트(Fact) 수집을 시작으로, 인사이트(Insight)를 도출하고 기회영역(Opportunity)을 발굴하는 추상화의 과정을 수행한다. 이어서 사용자의 멘탈모델에 맞는 기능을 제공하고 원하는 정보를 구조화하는 구체화의 과정을 통해, 사용자의 니즈에 부합하는 챗봇을 개발할 수 있을 것으로 기대한다. 본 연구에서는 제안한 프로세스의 실효성을 확인하기 위하여 국내 화장품 시장을 대상으로 실제 구축 사례를 함께 제시한다. 본 연구는 챗봇 개발 프로세스에 사용자 경험을 접목한 점에서 이론적 시사점을 가지며, 기업이나 기관이 바로 적용 가능한 현실적인 방법을 제안한다는 면에서 실무적 시사점을 가진다.

Conditional Generative Adversarial Network(CGAN) 기반 협업 필터링 추천 시스템 (Conditional Generative Adversarial Network based Collaborative Filtering Recommendation System)

  • 강소이;신경식
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.157-173
    • /
    • 2021
  • 소비자의 욕구와 관심에 맞추어 개인화된 제품을 추천하는 추천 시스템은 비즈니스에 필수적인 기술로서의 그 중요성이 증가하고 있다. 추천 시스템의 대표적인 모형 중 협업 필터링은 우수한 성능으로 다양한 분야에서 활용되고 있다. 그러나 협업필터링은 사용자-아이템의 선호도 정보가 충분하지 않을 경우 성능이 저하되는 희소성의 문제가 있다. 또한 실제 평점 데이터의 경우 대부분 높은 점수에 데이터가 편향되어 있어 심한 불균형을 갖는다. 불균형 데이터에 협업 필터링을 적용할 경우 편향된 클래스에 과도하게 학습되어 추천 성능이 저하된다. 이러한 문제를 해결하기 위해 많은 선행연구들이 진행되어 왔지만 추가적인 외부 데이터 또는 기존의 전통적인 오버샘플링 기법에 의존한 추천을 시도하였기에 유용성이 떨어지고 추천 성능 측면에서 한계점이 있었다. 본 연구에서는 CGAN을 기반으로 협업 필터링 구현 시 발생하는 희소성 문제를 해결함과 동시에 실제 데이터에서 발생하는 데이터 불균형을 완화하여 추천의 성능을 높이는 것을 목표로 한다. CGAN을 이용하여 비어있는 사용자-아이템 매트릭스에 실제와 흡사한 가상의 데이터를 생성하여, 희소성을 가지고 있는 기존의 매트릭스로만 학습한 것과 비교했을 때 높은 정확도가 예상된다. 이 과정에서 Condition vector y를 이용하여 소수 클래스에 대한 분포를 파악하고 그 특징을 반영하여 데이터를 생성하였다. 이후 협업 필터링을 적용하고, 하이퍼파라미터 튜닝을 통해 추천 시스템의 성능을 최대화하는데 기여하였다. 비교 대상으로는 전통적인 오버샘플링 기법인 SMOTE, BorderlineSMOTE, SVM-SMOTE, ADASYN와 GAN을 사용하였다. 결과적으로 데이터 희소성을 가지고 있는 기존의 실제 데이터뿐만 아니라 기존 오버샘플링 기법들보다 제안 모형의 추천 성능이 우수함을 확인하였으며, RMSE, MAE 평가 척도에서 가장 높은 예측 정확도를 나타낸다는 사실을 증명하였다.

양자 간 대화 상황에서의 화자인식을 위한 문장 시퀀싱 방법을 통한 자동 말투 인식 (Automatic Speech Style Recognition Through Sentence Sequencing for Speaker Recognition in Bilateral Dialogue Situations)

  • 강가람;권오병
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.17-32
    • /
    • 2021
  • 화자인식은 자동 음성시스템에서 중요한 기능을 담당하며, 최근 휴대용 기기의 발전 및 음성 기술, 오디오 콘텐츠 분야 등이 계속해서 확장됨에 따라 화자인식 기술의 중요성은 더구나 부각 되고 있다. 이전의 화자인식 연구는 음성 파일을 기반으로 화자가 누구인지 자동으로 판정 및 정확도 향상을 위한 목표를 가지고 진행되었다. 한편 말투는 중요한 사회언어학적 소재로 사용자의 사회적 환경과 밀접하게 관련되어 있다. 추가로 화자의 말투에 사용되는 종결어미는 문장의 유형을 결정하거나 화자의 의도, 심리적 태도 또는 청자에 대한 관계 등의 기능과 정보를 가지고 있다. 이처럼 종결어미의 활용형태는 화자의 특성에 따라 다양한 개연성이 있어 특정 미확인 화자의 종결어미의 종류와 분포는 해당 화자를 인식하는 것에 도움이 될 것으로 보인다. 기존 텍스트 기반의 화자인식에서 말투를 고려한 연구가 적었으며 음성 신호를 기반으로 한 화자인식 기법에 말투 정보를 추가한다면 화자인식의 정확도를 더욱 높일 수 있을 것이다. 따라서 본 연구의 목적은 한국어 화자인식의 정확도를 개선하기 위해 종결어미로 표현되는 말투(speech style) 정보를 활용한 방법을 제안하는 것이다. 이를 위해 특정인의 발화 내용에서 등장하는 종결어미의 종류와 빈도를 활용하여 벡터값을 생성하는 문장 시퀀싱이라는 방법을 제안한다. 본 연구에서 제안한 방법의 우수성을 평가하기 위해 드라마 대본으로 학습 및 성능평가를 수행하였다. 본 연구에서 제안한 방법은 향후 실존하는 한국어 음성인식 서비스의 성능 향상을 위한 수단으로 사용될 수 있으며 지능형 대화 시스템 및 각종 음성 기반 서비스에 활용될 것을 기대한다.

인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구 (Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence)

  • 조유정;손권상;권오병
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.103-128
    • /
    • 2021
  • 최근 주식의 수익률과 거래량을 설명하는 주요 요인으로서 투자자의 관심도와 주식 관련 정보 전파의 영향력이 부각되고 있다. 또한 인공지능과 같은 혁신 신기술을 개발보급하거나 활용하려는 기업의 경우 거시환경 및 시장 불확실성 때문에 기업의 미래 주식 수익률과 주식 변동성을 예측하기 어렵다는 문제를 가지고 있다. 이는 인공지능 활성화의 장애요인으로 인식되고 있다. 따라서 본 연구의 목적은 인공지능 관련 기술 키워드의 인터넷 검색량을 투자자의 관심 척도로 사용하여, 기업의 주가 변동성을 예측하는 기계학습 모형을 제안하는 것이다. 이를 위해 심층신경망 LSTM(Long Short-Term Memory)과 벡터자기회귀(Vector Autoregression)를 통해 주식시장을 예측하고, 기술의 사회적 수용 단계에 따라 키워드 검색량을 활용한 주가예측 성능 비교를 통해 기업의 투자수익 예측이나 투자자들의 투자전략 의사결정을 지원하는 주가 예측 모형을 구축하였다. 또한 인공지능 기술의 세부 하위 기술에 대한 분석도 실시하여 기술 수용 단계에 따른 세부 기술 키워드 검색량의 변화를 살펴보고 세부기술에 대한 관심도가 주식시장 예측에 미치는 영향을 살펴보았다. 이를 위해 본 연구에서는 인공지능, 딥러닝, 머신러닝 키워드를 선정하여, 2015년 1월 1일부터 2019년 12월 31일까지 5년간의 인터넷 주별 검색량 데이터와 코스닥 상장 기업의 주가 및 거래량 데이터를 수집하여 분석에 활용하였다. 분석 결과 인공지능 기술에 대한 키워드 검색량은 사회적 수용 단계가 진행될수록 증가하는 것으로 나타났고, 기술 키워드를 기반으로 주가예측을 하였을 경우 인식(Awareness)단계에서 가장 높은 정확도를 보였으며, 키워드별로 가장 좋은 예측 성능을 보이는 수용 단계가 다르게 나타남을 확인하였다. 따라서 기술 키워드를 활용한 주가 예측 모델 구축을 위해서는 해당 기술의 하위 기술 분류를 고려할 필요가 있다. 본 연구의 결과는 혁신기술을 기반으로 기업의 투자수익률을 예측하기 위해서는 기술에 대한 대중의 관심이 급증하는 인식 단계를 포착하는 것이 중요하다는 점을 시사한다. 또한 최근 금융권에서 선보이고 있는 빅데이터 기반 로보어드바이저(Robo-advisor) 등 투자 의사 결정 지원 시스템 개발 시 기술의 사회적 수용도를 세분화하여 키워드 검색량 변화를 통해 예측 모델의 정확도를 개선할 수 있다는 점을 시사하고 있다.

네이버 뉴스 댓글을 이용한 산업 분야별 담론의 감성에 기반한 주제 트렌드 및 여론의 변화와 주가 흐름의 연관성 분석 (Analyzing Topic Trends and the Relationship between Changes in Public Opinion and Stock Price based on Sentiment of Discourse in Different Industry Fields using Comments of Naver News)

  • 오찬희;김규리;주영준
    • 정보관리학회지
    • /
    • 제39권1호
    • /
    • pp.257-280
    • /
    • 2022
  • 본 연구에서는 대한민국 정부가 지정한 국가전략기술 사업인 반도체, 이차전지, 바이오 산업에 대한 여론을 파악하고 여론의 변화와 주가 흐름의 연관성을 분석하기 위해 각 산업별 대표 기업에 대한 기사의 댓글을 분석하였다. 반도체 산업에서 '삼성전자', 'SK하이닉스', 이차전지 산업에서 '삼성SDI', 'LG화학', 바이오 산업에서 '삼성바이오로직스', '셀트리온'을 선정하여 이를 제목에 포함하고 있는 2020년 1월 1일부터 2020년 12월 31일까지 발행된 네이버 뉴스 기사의 댓글 47,452개를 수집하고 분석하였다. 먼저, 해당 댓글을 긍정, 중립, 부정의 감성으로 나누고 각 감성 그룹에서의 시간의 흐름에 따른 댓글의 동적인 주제를 분석하여 각 산업별 여론의 트렌드를 파악하였다. 분석 결과 반도체 산업 분야의 경우 투자, 코로나19관련 이슈, 삼성전자라는 대기업에 대한 신뢰, 정부 정책 변화로 인한 타격에 대한 언급이 주제 토픽으로 나타났다. 이차전지 산업체의 경우 투자, 배터리, 기업 이슈에 대한 언급이 주제 토픽으로 나타났다. 바이오 산업체의 경우 투자, 코로나19 관련 이슈 및 기업 이슈에 대한 언급이 주제 토픽으로 나타났다. 다음으로, 댓글의 감성이 실제 주가와 연관성이 있는지를 알아보고자 각 대표 기업 별 주가의 변화와 댓글의 감성 점수 변화를 시각적 분석기법을 이용하여 비교 분석하였다. 분석 결과, 댓글의 감성 점수와 주가의 변화 흐름이 매우 유사하게 나타남을 통해 여론의 감성 점수 변화와 주가의 흐름에는 연관성이 있음을 확인하였다. 본 연구는 주가와의 연관성이 높은 뉴스 기사 댓글을 분석했다는 점, 수집 시기를 코로나19로 선정하여 코로나19라는 특수한 상황에서의 여론 트렌드 변화를 파악했다는 점, 국가전략기술제도에 속하는 산업 기업에 대한 여론을 분석하여 정부기관의 관련 정책 제정에 객관적인 근거를 제공하였다는 점에서 의의를 지닌다.

사회연결망분석을 활용한 한국 남자축구대표팀 경기성과 분석: 벤투 감독 경기를 중심으로 (Analyzing the Performance of the South Korean Men's National Football Team Using Social Network Analysis: Focusing on the Manager Bento's Matches)

  • 정연식 ;강은경 ;양성병
    • 지식경영연구
    • /
    • 제24권2호
    • /
    • pp.241-262
    • /
    • 2023
  • 스포츠 경기에서 발생하는 현상이나 경기기록을 분석하는 스포츠 경기분석 분야에 첨단기술과 다양한 과학적 분석기법이 적용되고 있으며, 그 중 패스네트워크 분석에 사회연결망분석 방법이 활발히 활용되고 있다. 축구는 선수 간 패스라는 상호작용을 통해 경기가 이루어지는 대표적인 스포츠인 만큼 사회연결망분석을 이용하여 기존에는 측정할 수 없었던 경기에 대한 새로운 정보를 제공하고자 노력하고 있다. 이에, 본 연구에서는 단일 축구팀의 (1) 시간 흐름에 따른 패스네트워크의 변화를 분석하고, (2) 전술의 변화에 영향을 미치는 주요 요인 중 경기의 성격 변화(카타르월드컵 vs. A매치)와 (3) 상대팀 변화(FIFA랭킹 상위팀 vs. FIFA랭킹 하위팀)에 대한 패스네트워크까지 총 세 가지 상황을 비교∙분석하고자 하였다. 보다 구체적으로, 벤투 감독 부임 이후 한국 남자축구국가대표팀의 경기 중 10 경기를 선별하고, 이에 대한 네트워크 지표를 추출하였으며, 축구팀 경기력 평가모델의 네 가지 지표(효율성, 응집력, 취약성, 활동성/리더십)를 추출된 데이터에 적용한 후 세 가지 상황을 각각 분석하였다. 연구결과, 시간 흐름에 따른 경기력 분석에서 응집력이 유의하게 상승하고, 취약성이 유의하게 하락하는 것을 확인할 수 있었고, 경기성격 변화에 따른 비교분석에서는 카타르월드컵 경기가 A매치 경기보다 평가모델의 모든 항목에서 경기력이 우수한 것으로 나타났다. 마지막으로, 상대팀의 변화에 따른 비교분석에서는 FIFA랭킹 하위팀과의 경기가 상위팀과의 경기보다 평가모델의 모든 항목에서 경기력이 우수하게 나타났다. 본 연구의 결과가 축구팀의 감독 선임 및 경기 전략을 수립하는데 주요한 기초자료로 활용되어 축구팀의 경기력 향상에 기여할 수 있기를 기대한다.

How Did the COVID-19 Pandemic Affect Mobility, Land Use, and Destination Selection? Lesson from Seoul, Korea

  • Lee, Jiwon;Gim, Tae-Hyoung Tommy;Park, Yunmi;Chung, Hyung-Chul;Handayani, Wiwandari;Lee, Hee-Chung;Yoon, Dong Keun;Pai, Jen Te
    • 토지주택연구
    • /
    • 제14권4호
    • /
    • pp.77-93
    • /
    • 2023
  • COVID-19 팬데믹은 정부의 예방 및 통제 조치, 사람들의 위험 인식의 변화, 그리고 생활 방식의 변화를 통해 상당한 사회적 변화를 가져왔다. 특히, 정부의 방역정책과 도시공간의 잠재적 감염 위험에 대한 우려는 교통수단과 도시공간에 대한 선호를 크게 변화시켰다. 이러한 변화는 COVID-19 팬데믹이후에도 도시 공간에 지속적인 영향을 미치거나 새로운 형태로 변화할 수 있다. 따라서 본 연구는 코로나19 범유행에 따른 도시민의 이동수단 선호와 도시공간 이용 변화를 분석하여 도시공간이 현재와 미래의 감염병에 적응할 수 있는 회복탄력성과 잠재력을 탐색하고자 한다. 본 고는 이동 수단과 도시 공간에 대한 전반적인 선호도가 팬데믹 이전, 팬데믹 중, 팬데믹 종료에 따라 유의미하게 차이가 있다는 것을 확인하였다. 팬데믹 기간 동안 안전하다고 인식되는 개인 소유 차량과 녹지 공간을 제외하고는 전반적인 이동수단과 도시 공간에 대한 선호도가 감소하였다. 특히, 이동수단과 도시 공간에 대한 유행 중 선호도는 팬데믹 전에 비해 5배 가량 낮게 나타났다. 팬데믹 당시 긍정적으로 인식되었던 녹지 공간과 의료시설이 팬데믹 이전 선호도 수준으로 돌아올 것으로 예상되나, 다른 도시 공간 요소들은 뉴노멀을 맞이한 것으로 보인다. 본 결과는 코로나19 팬데믹이 도시민의 이동 수단과 도시 공간 선호에 큰 영향을 미쳤음을 시사한다.

직원을 위한 내부마케팅이 기업의 시가 총액 변동률에 미치는 영향 분석: 잡플래닛 기업 리뷰를 중심으로 (An Analysis of the Internal Marketing Impact on the Market Capitalization Fluctuation Rate based on the Online Company Reviews from Jobplanet)

  • 최기철;이상용
    • 경영정보학연구
    • /
    • 제20권2호
    • /
    • pp.39-62
    • /
    • 2018
  • 컴퓨터 연산능력의 향상과 데이터를 수집하고 가공해 분석이 가능하도록 데이터를 정형화 시키는 기술이 발달함에 따라, 소셜미디어 및 인터넷 공간에서 생산되는 다양한 텍스트 데이터를 수집하고 그것을 분석하는 시도가 늘고 있다. 본 연구는 이와 같은 기술의 발전과 새롭게 시도되고 있는 분석법을 활용해 텍스트 데이터를 분석하여 과거에 설문조사 방법을 통해 확인했던 "내부마케팅"의 효과를 기존과는 다른 방식으로 확인해 보고자 하였다. 이와 같은 분석을 위해, 전/현직자들이 해당 기업의 구직자들에게 기업의 리뷰를 제공하는 플랫폼 잡플래닛(www.jobplanet.co.kr)의 리뷰 데이터를 웹크롤러를 생성하여 약 4만 건을 수집하였다. 또한 수집된 비정형 데이터를 정형화하기 위한 형태소 분석을 진행하여 명사만을 추출한 후, 미리 생성해 놓은 단어주머니에 들어있는 단어와 같을 경우 그 숫자를 세어 분류화를 진행하였다. 분류화된 내부마케팅 영역별 단어 수의 변화를 독립변수로, 시가총액 변동률을 종속변수로 활용하여, 내부마케팅과 시가총액간의 관계를 확인하고자 하였다. 그 결과, 대부분의 기존 연구와는 다르게 내부마케팅의 효과는 제한적인 영역에서만 기업의 성과에 긍정적인 영향을 미치며 대부분의 환경에서는 음의 영향을 미치는 것으로 나타났다. 산업군으로 나누었을 때, 제조업에서는 여성지원과 교육 훈련 부문에서 기업성과에 긍정의 영향을 미치는 것으로 나타났으나, 유통업에서는 직원 복지, 일-가정 양립 그리고 바이오/제약 업종에서는 직원 복지, 일-가정 양립, 사내 커뮤니케이션 그리고 보상 부문에서 모두 기업성과에 음의 영향을 미치는 것으로 나타났다. 또한 기업의 규모가 크고 역사가 오래된 기업에서는 직원 복지가 기업성과에 악영향을 미치는 것으로 나타났으나, 교육 훈련 부문에서는 종속변수에 긍정적 영향을 미치는 것을 확인할 수 있었으며, 기업의 규모가 작고 역사가 짧은 기업에서는 직원 복지, 사내 커뮤니케이션 그리고 일-가정 양립에서 종속변수와 음의 관계를, 여성지원 에서는 종속변수와 양의 관계를 갖는 것으로 나타났다. 본 연구는 이러한 결과들을 분석하여 이론적 의미뿐만 아니라, 실무적 함의를 제시하고자 하였다.

Lymphoscintigraphy의 정량분석 시 오류 요인에 관한 평가 (Evaluation of Error Factors in Quantitative Analysis of Lymphoscintigraphy)

  • 연준호;김수영;최성욱;석재동
    • 핵의학기술
    • /
    • 제15권2호
    • /
    • pp.76-82
    • /
    • 2011
  • Lymphatic scintigraphy는 림프계 진단에 있어 절대표준검사로 흔히 이용되고 있으며 림프부종의 진단, 치료방침의 설정, 치료 후 평가 등에 유용한 검사이다.1) 상 하지 검사 중 하지에 부종이 있는 환자의 검사에서 무의식적인 환자의 움직임이나 1분, 1시간, 2시간 검사의 동일한 자세 유지가 되지 않을 경우 정량 분석에 영향을 주었다. GE사의 Infinia 장비를 이용하여 방사성의약품 $^{99m}Tc$-phytate 37 MBq (1.0 mCi) 4개를 2010년 6월에서 8월 사이에 내원하는 환자 40명에게 피하주사를 하여 정량 분석을 비교하였다. 환자의 발을 고정한 상태와 고정하지 않은 상태로 영상을 얻어 발의 자세 변경이 연부조직과 뼈에 의해 계측 값의 변화가 있는지 확인하였다. 또한 발의 자세 변경으로 검출기와 주사부위의 거리 변화에 따른 계측 값의 차이를 알아보기 위해 $^{99m}Tc\;600{\mu}Ci$ 점선원과 검출기와의 거리를 2 cm씩 거리를 증가시켜 5회 측정하였다. 마지막으로 $^{99m}Tc$-phytate가 림프선을 따라 이동하는 양의 차이가 정량 분석 값에 영향을 주는 지 알아보기 위해 같은 자세로 주사 후 1분, 6분 lymphatic scintigraphy 영상을 얻어 비교하였다. 주사 후 1분 검사에서 발을 고정한 상태와 고정하지 않은 상태를 비교했을 때 오차 값에 대한 편차 백분율 값은 최소 2.7%에서 최대 25.8%의 값을 얻었다. 그리고 거리 변화에 따른 계측 값은 기준 값이 평균 176,587 counts이고 2 cm 간격으로 거리를 증가시켜 측정한 결과 173,661 (2 cm), 172,095 (4 cm), 170,996 (6 cm), 167,677 (8 cm), 169,208 counts (10 cm)로 나타나 편차 백분율이 1.27, 1.79, 2.04, 2.42, 2.32%로 2.5%를 넘지 않음을 알 수 있었다. 또한, 피하주사 후 스캔까지 6분 이내에 림프선을 타고 이동한 양을 평가한 결과 최소 0.15%에서 최대 2.3%만큼 림프선을 타고 이동하였다. 이는 거리에 따른 편차 백분율 2.42%를 제외시키고 림프선에 의한 최대 변동 값인 2.3%를 제외하더라도 자세 변경으로 인한 연부조직과 bone에 의한 감소가 20%이상의 큰 차이가 나타난 것을 알 수 있다. 부종이 있는 환자의 림프 흐름을 평가하고 림프계에 의해 섭취되는 양을 정량 분석하는 lymphatic scintigraphy는 동일 환자의 1분, 1시간, 2시간 검사에서 다른 자세가 발생할 경우 뼈와 연부조직에 의한 감약으로 최대 25.8%의 차이를 나타냈으며, 통계적 검증 결과도 발을 고정한 상태와 고정하지 않은 상태는 유의한 차이를 보였다. 그리고 자세 변경으로 인한 검출기와의 거리 차이, 피하 주사 후 검사 시간까지의 차이로 인한 계수 값의 변화는 상대적으로 작지만 정량 분석 시 정확한 결과를 얻지 못하는 요인임을 알 수 있었다. 그러므로 정량 분석을 위한 lymphatic scintigraphy에서는 반드시 자세 고정을 위한 노력과 고정물 제작 활용이 선행되어야 할 것이다.

  • PDF