• Title/Summary/Keyword: Analytical ultracentrifuge

Search Result 5, Processing Time 0.019 seconds

Studies on the production and purification of an extracellular protease from a nonpigmenting Serration sp. (Nonpigmenting Serratia sp.에서 균체의 단백질 분해효소의 생성과 정제에 관한 연구)

  • Kim, Soung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.4
    • /
    • pp.321-327
    • /
    • 1985
  • Cultivation conditions for the production of extracellular alkaline protease by a nonpiamentation Serratia sp. and purification of the enzyme were studied. The maximum enzyme level was obtained at the beginning of stationary phase when the organism was cultured on brain heart infusion medium at $25^{\circ}C$ under aeration (gyratory shaking, 180 cycles/min). The enzyme was purified about 100 fold with 16.5% yield by ammonium sulfate precipitation, ammonium sulfate fractionation followed by DEAE-cellulose chromatography (1st and 2nd). The purified enzyme moved as a single symmetrical peak in the analytical ultracentrifuge. The enzyme demonstrated its maximum activity at pH 8.5-9.0 and 4$0^{\circ}C$ when vitamin-free casein was used as a substrate.

  • PDF

Equilibrium Binding of Wild-type and Mutant Drosophila Heat Shock Factor DNA Binding Domain with HSE DNA Studied by Analytical Ultracentrifugation

  • Park, Jin-Ku;Kim, Soon-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1839-1844
    • /
    • 2012
  • We have investigated binding between wild-type and mutant Heat Shock Factor (HSF) DNA binding domains (DBDs) with 17-bp HSE containing a central 5'-NGAAN-3' element by equilibrium analytical ultracentrifugation using multi-wavelength technique. Our results indicate that R102 plays critical role in HSE recognition and the interactions are characterized by substantial negative changes of enthalpy (${\Delta}H^0_{\theta}=-9.90{\pm}1.13kcal\;mol^{-1}$) and entropy (${\Delta}S^0_{\theta}=-12.46{\pm}3.77cal\;mol^{-1}K^{-1}$) with free energy change, ${\Delta}G^0_{\theta}$ of $-6.15{\pm}0.03kcal\;mol^{-1}$. N105 plays minor role in the HSE interactions with ${\Delta}H^0_{\theta}$ of $-2.54{\pm}1.65kcal\;mol^{-1}$, ${\Delta}S^0_{\theta}$ of $19.28{\pm}5.50cal\;mol^{-1}K^{-1}$ and ${\Delta}G^0_{\theta}$ of $-8.35{\pm}0.05kcal\;mol^{-1}$, which are similar to those observed for wild-type DBD:HSE interactions (${\Delta}H^0_{\theta}=-3.31{\pm}1.86kcal\;mol^{-1}$, ${\Delta}S^0_{\theta}=17.38{\pm}6.20cal\;mol^{-1}K^{-1}$ and ${\Delta}G^0_{\theta}=-8.55{\pm}0.06kcal\;mol^{-1}$) indicating higher entropy contribution for both wild-type and N105A DBD bindings to the HSE.

A Helix-induced Oligomeric Transition of Gaegurin 4, an Antimicrobial Peptide Isolated from a Korean Frog

  • Eun, Su-Yong;Jang, Hae-Kyung;Han, Seong-Kyu;Ryu, Pan-Dong;Lee, Byeong-Jae;Han, Kyou-Hoon;Kim, Soon-Jong
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.229-236
    • /
    • 2006
  • Gaegurin 4 (GGN4), a novel peptide isolated from the skin of a Korean frog, Rana rugosa, has broad spectrum antimicrobial activity. A number of amphipathic peptides closely related to GGN4 undergo a coil to helix transition with concomitant oligomerization in lipid membranes or membrane-mimicking environments. Despite intensive study of their secondary structures, the oligomeric states of the peptides before and after the transition are not well understood. To clarify the structural basis of its antibiotic action, we used analytical ultracentrifugation to define the aggregation state of GGN4 in water, ethyl alcohol, and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). The maximum size of GGN4 in 15% HFIP corresponded to a decamer, whereas it was monomeric in buffer. The oligomeric transition is accompanied by a cooperative 9 nm blue-shift of maximum fluorescence emission and a large secondary structure change from an almost random coil to an ${\alpha}$-helical structure. GGN4 induces pores in lipid membranes and, using electrophysiological methods, we estimated the diameter of the pores to be exceed $7.3{\AA}$, which suggests that the minimal oligomer structure responsible is a pentamer.

Studies on the Production of $\beta$-Galactosidase by Microorganism and its Application (Part 1) Conditions for the Production and Purification of the Enzyme from Penicillium SP. (미생물에 의한 $\beta$-Galactosidase의 생산 및 이용에 관한 연구 (제 1보) Penicillium sp.로부터 효소의 생산조건 및 정제)

  • 오평수;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.4
    • /
    • pp.207-212
    • /
    • 1981
  • A strain of Penicillium sp. which produces considerable amount of $\beta$-galactosidase was selected from extracellular $\beta$-galactosidase-producing fungi isolated from soil. The enzyme was found to be very stable in neutral pH range. Maximum enzymatic activity was reached after 72 hr of incubation in a wheat bran medium at 3$0^{\circ}C$. Productivity of the enzyme appeared not to be affected by the addition of carbon sources to the medium but the activity of the enzyme was increased from 14% to 85% by the addition of various nitrogen sources. The enzyme extracted from the wheat-bran culture of the Penicillium sp. was purified to 5050-fold by ammonium sulfate fractionation, SP-Sephadex C-50 chromatography, Ultrogel AcA 44 filtration and hydroxyapatite chromatography. The purified $\beta$-galactosidase was homogeneous on ultracentrifugation and disc electrophoresis.

  • PDF

Characteristics of $G_{418}$-sensitive mitochondrial ATPase/ATP synthase from pleurotus florida (사철느타리버섯 중 $G_{418}$-sensitive 미토콘드리아성 ATPase/ATP synthase의 특성)

  • Kim, Jae-Woong;Kim, Dong-Hee;Lee, Jung-Bock;Lee, Sur-Koo;Min, Tae-Jin
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.477-484
    • /
    • 1992
  • The mitochondrion was purified at 44% sucrose layer from pleurotus florida by using ultracentrifuge and sucrose density gradient method. Optimum pH and temperature of ATPase and ATP synthase were pH 7.4, $60^{\circ}C$ and pH 7.5, $57^{\circ}C$ respectively, also their Km values were determined as 11.6mM and 8.4mM. ATPase was activated at 5~6mM ATP substrate concentration, then ATP synthase was 5~10mM range ADP. ATPase/ATP synthase were $Mg^{2+}$-dependent enzyme, partially inhibited by their substrate, and then showed an none competitive inhibition pattern by $G_{418}$. Amino acid composition of ATPase/ATP synthase was as follows, hydrophobic amino acid residue was 50.5%, small residue, 56.1%, hydrogen bonding residue, 43.7% and helix breaking residue, 55.2%. Phosphatidyl choline, phosphatidyl ethanolamine and phosphatidyl glycerol were contained but not phosphatidyl inositol and phosphatidyl serine. Palmitate(51.31%), stearate(18.32%) and unsaturated fatty acids($C_{18:1}$, $C_{18:2}$ and $C_{16:1}$) were predominated.

  • PDF