• Title/Summary/Keyword: Analytical calculations

Search Result 203, Processing Time 0.021 seconds

Optimization of spring back in U-die bending process of sheet metal using ANN and ICA

  • Azqandi, Mojtaba Sheikhi;Nooredin, Navid;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.447-452
    • /
    • 2018
  • The controlling and prediction of spring back is one of the most important factors in sheet metal forming processes which require high dimensional precision. The relationship between effective parameters and spring back phenomenon is highly nonlinear and complicated. Moreover, the objective function is implicit with regard to the design variables. In this paper, first the influence of some effective factors on spring back in U-die bending process was studied through some experiments and then regarding the robustness of artificial neural network (ANN) approach in predicting objectives in mentioned kind of problems, ANN was used to estimate a prediction model of spring back. Eventually, the spring back angle was optimized using the Imperialist Competitive Algorithm (ICA). The results showed that the employment of ANN provides us with less complicated and time-consuming analytical calculations as well as good results with reasonable accuracy.

An Experimental Investigation of Particle Impingement Erosion in Hydraulic Systems (유압시스템의 입자 침해 침식의 실험적 고찰)

  • 이재천;김성훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.117-122
    • /
    • 2002
  • This study assesses the wear process of particle impingement erosion which is a major source of erosion among fluid power components. First, Bitter's theory was modified to simplify engineering calculations. Second, actual experiments were conducted to validate the modified equation. And the effect of concentration and size distribution of impinging particles was tested. Little deviation from the prediction of the modified equation was observed. To develop complete analytical approach to the erosion mechanism, further experimental data are required to establish a correlation with other engineering parameters.

Calculations of the Thermal Expansion Coefficient for Rock-Forming Minerals Using Molecular Dynamics (MD) Simulation (분자동역학(MD) 시뮬레이션을 이용한 조암광물의 열팽창 계수 산정)

  • 서용석;배규진
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.269-278
    • /
    • 2001
  • We describe the calculation of thermal expansion coefficients of $\alpha$-quartz, muscovite and albite using a MD simulation method. The selection of interatomic potentials is important for the MD calculation, and we used the 2-body interatomic potential function. The coefficients are calculated using a differential operation of the temperature dependence of the lattice constant obtained from the NPT-ensemble molecular dynamics simulation. Reasonable agreement is found between the analytical results and measured data.

  • PDF

Confinement of concrete in two-chord battened composite columns

  • Szmigiera, Elzbieta
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1511-1529
    • /
    • 2015
  • This article provides an analysis of the complex character of stress distribution in concrete in stub columns consisting of two HE160A steel sections held together with batten plates and filled with concrete. In such columns, evaluating the effect of concrete confinement and determining the extent of this confinement constitute a substantially complex problem. The issue was considered in close correspondence to rectangular cross section tubular elements filled with concrete, concrete-encased columns, as well as to steel-concrete columns in which reinforcement bars are connected with shackles. In the analysis of concrete confinement in two-chord columns, elements of computational methods developed for different types of composite cross sections were adopted. The achieved analytical results were compared with calculations based on test results.

Spectral and Coherence Properties of Spectrally Partially Coherent Gaussian Schell-model Pulsed Beams Propagating in Turbulent Atmosphere

  • Liu, Dajun;Luo, Xixian;Wang, Guiqiu;Wang, Yaochuan
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.271-277
    • /
    • 2017
  • Based on the extended Huygens-Fresnel principle, the analytical propagation formulae for spectrally partially coherent Gaussian Schell-model pulsed (SPGSMP) beams propagating in turbulent atmosphere have been derived. The influences of the parameters for turbulent atmosphere and SPGSMP beams on the on-axis and off-axis spectral shift and degree of coherence for SPGSMP beams propagating in turbulent atmosphere have been analyzed, using numerical calculations. The obtained results have potential applications for SPGSMP beams in free-space optical communication and laser lidar.

Flexural behaviour of fibre reinforced geopolymer concrete composite beams

  • Vijai, K.;Kumutha, R.;Vishnuram, B.G.
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.437-459
    • /
    • 2015
  • An experimental investigation on the behaviour of geopolymer composite concrete beams reinforced with conventional steel bars and various types of fibres namely steel, polypropylene and glass in different volume fractions under flexural loading is presented in this paper. The cross sectional dimensions and the span of the beams were same for all the beams. The first crack load, ultimate load and the loaddeflection response at various stages of loading were evaluated experimentally. The details of the finite element analysis using "ANSYS 10.0" program to predict the load-deflection behavior of geopolymer composite reinforced concrete beams on significant stages of loading are also presented. Nonlinear finite element analysis has been performed and a comparison between the results obtained from finite element analysis (FEA) and experiments were made. Analytical results obtained using ANSYS were also compared with the calculations based on theory and presented.

Vibration Analysis of a Rotating Composite Shaft (복합재료 회전축의 진동해석)

  • Kim, Won-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.361-365
    • /
    • 2001
  • Laboratory tests are conducted to validate the mechanical model of a filament-wound composite shaft. Also, design charts are produced by validated analytical calculations based on the Timoshenko beam model of a layered steel/composite structure. The major results found are that steel/composite hybrid shafts can lead to better dynamic and static performances over steel or pure composite shafts of the same volume, and the most effective composite structures contain some steel in the form of a tubular core. These results can be used in the design process of composite boring bars and automotive drive shafts.

  • PDF

Experimental and Analytical Investigation on Operating Characteristics for an Ejector Ramjet

  • Okai, Keiichi;Taguchi, Hideyuki;Futamura, Hisao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.726-733
    • /
    • 2004
  • Experiments and numerical calculations were conducted on the flow field of a model ejector ramjet configuration to investigate fundamental fluid dynamic aspects of its pumping and mixing effects. Also a one-dimensional flight performance analysis program was constructed with a simple ejector modeling. After comparing the model with some of the previous experimental and numerical results, a flight performance analysis was conducted with the program. The present states of the program and some features to be improved are presented.

  • PDF

A Study on the I-V characteristics of a delta doped short-channel HEMT (단채널 덱타도핑 HEMT의 전압-전류 특성에 대한 2차원적 해석)

  • 이정호;채규수;김민년
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.4
    • /
    • pp.354-358
    • /
    • 2004
  • In this thesis, an analytical model for Ⅰ-Ⅴ characteristics of an n-AlGaAs/GaAs Delta doped HEMT is proposed. 2-dimensional electron gas density, and conduction band edge profile are calculated from a self-consistent iterative solution of the Poisson equation. Parameters, e.g., the saturation velocity, 2-dimensional electron gas concentration, thickness of the doped and undoped layer(AlGaAs, GaAs, spacer etc.,) are in good agreement with the independent calculations.

  • PDF

A Study on the I-V characteristics of a delta doped short-channel HEMT (단채널 델타도핑 HEMT의 전압-전류 특성에 대한 2차원적 해석)

  • Lee Jung-Ho;Chae Gyoo-Soo;Kim Min-Nyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.158-161
    • /
    • 2004
  • In this study, an analytical model for I-V characteristics of an n-AIGaAs / GaAs Delta doped HEMT is proposed. The two-dimensional electron gas density and the conduction band edge profile are calculated from a self-consistent iterative solution of the Poisson equation. The parameters, which include the saturation velocity, two-dimensional electron gas concentration, thickness of the doped and undoped layer(AIGaAs, GaAs, spacer etc.,), are in good agreement with the independent calculations.

  • PDF