• Title/Summary/Keyword: Analytical Solution

검색결과 2,337건 처리시간 0.032초

조합 하중을 받은 샌드위치 패널의 최종강도 설계식 개발 (Analytical Solution for the Ultimate Strength of Sandwich Panels under In-plane Compression and Lateral Pressure)

  • 김봉주
    • 한국해양공학회지
    • /
    • 제33권6호
    • /
    • pp.535-546
    • /
    • 2019
  • The paper presents a closed-form analytical solution for the ultimate strength of sandwich panels with metal faces and an elastic isotropic core during combined in-plane compression and lateral pressure under clamped boundary condition. By using the principle of minimum potential energy, the stress distribution in the faces during uni-axial edge compression and constant lateral pressure was obtained. Then, the ultimate edge compression was derived on the basis that collapse occurs when yield has spread from the mid-length of the sides of the face plates to the center of the convex face plates. The results were validated by nonlinear finite element analysis. Because the solution is analytical and closed-form, it is rapid and efficient and is well-suited for use in practical structural design methods, including repetitive use in structural optimization. The solution applies for any elastic isotropic core material, but the application that stimulated this study was an elastomer-cored steel sandwich panel that had excellent energy absorbing and protective properties against fire, collisions, ballistic projectiles, and explosions.

축대칭 지형에 적합한 경계처리기법 (Boundary Treatment for Axi-symmetric Topography)

  • 정태화;신현정;손민우
    • 한국콘텐츠학회논문지
    • /
    • 제13권2호
    • /
    • pp.505-511
    • /
    • 2013
  • 경사진 지형을 갖는 축대칭 지형에 적용이 가능한 경계처리기법을 개발하였다. 섬 지형의 경우 복잡한 지형으로 인하여 유한요소모형을 사용하여 파의 변형을 해석하는 것이 좋지만 해수와 접하는 섬의 단면이 연직이 아닌 경우에는 수심이 0이 되어 경계면을 적절하게 처리하기 어렵다는 단점이 있다. 본 연구에서는 장파에 대한 해석해를 활용하여 임의의 경사진 경계면에 적용가능한 경계처리기법을 개발하였다. 이를 위해 지배방정식으로 완경사 방정식을 사용하였으며 계산 영역을 해석해 영역과 수치해 영역으로 구분하여 해석해 영역에 기존의 해석해를 적용한 후 수치해와 결합하여 모델을 완성하였다. 유도된 해는 기존의 해석해와 비교하여 그 타당성을 검증하였다.

지하수 흐름의 해석해를 이용한 토양진공추출 해석 (Analysis of Soil Vacuum Extraction using Analytical Solution of Groundwater Flow)

  • 김민환;이학;한동진
    • 한국방재학회 논문집
    • /
    • 제9권5호
    • /
    • pp.139-145
    • /
    • 2009
  • 불포화지역의 유기화합물을 제거하기위해 지하수 흐름 해석해를 토양 진공추출 설계에 적용시켰다. 토양 공극 속의 가스 밀도가 압력에 따라 달라지므로 가스나 증기의 흐름을 지배하는 방정식은 비선형이다. 선행 연구자 의해 선형화된 방정식은 지하수 흐름의 지배방정식과 유사하다. 압력대수층과 누수대수층의 압력강하량에 대해서 Massmann의 자료를 이용하여 비교하였다. 압력대수층에 대해서는 Massmann에 의해 제시된 Theis의 해를 수정하였으며 Theis의 해를 검증하기 위해 GASSOLVE9의 프로그램을 이용하였다. Hantush의 해석해를 이용하여 누수대수층 구조에 대해서 압력 강하량을 계산하여 Massmann의 해와 비교하였다. 그 결과 압력강하량에 대해 근사적인 결과를 얻었다.

A semi-analytical study on the nonlinear pull-in instability of FGM nanoactuators

  • Attia, Mohamed A.;Abo-Bakr, Rasha M.
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.451-463
    • /
    • 2020
  • In this paper, a new semi-analytical solution for estimating the pull-in parameters of electrically actuated functionally graded (FG) nanobeams is proposed. All the bulk and surface material properties of the FG nanoactuator vary continuously in thickness direction according to power law distribution. Here, the modified couple stress theory (MCST) and Gurtin-Murdoch surface elasticity theory (SET) are jointly employed to capture the size effects of the nanoscale beam in the context of Euler-Bernoulli beam theory. According to the MCST and SET and accounting for the mid-plane stretching, axial residual stress, electrostatic actuation, fringing field, and dispersion (Casimir or/and van der Waals) forces, the nonlinear nonclassical equation of motion and boundary conditions are obtained derived using Hamilton principle. The proposed semi-analytical solution is derived by employing Galerkin method in conjunction with the Particle Swarm Optimization (PSO) method. The proposed solution approach is validated with the available literature. The freestanding behavior of nanoactuators is also investigated. A parametric study is conducted to illustrate the effects of different material and geometrical parameters on the pull-in response of cantilever and doubly-clamped FG nanoactuators. This model and proposed solution are helpful especially in mechanical design of micro/nanoactuators made of FGMs.

Analytical solutions for density functionally gradient magneto-electro-elastic cantilever beams

  • Jian, Aimin;Ding, Haojiang
    • Smart Structures and Systems
    • /
    • 제3권2호
    • /
    • pp.173-188
    • /
    • 2007
  • The general solution for two-dimensional magneto-electro-elastic media in terms of four harmonic displacement functions is proposed analytically. The expressions of specific solutions of magneto-electro-elastic plane problems with specific body forces are derived. Finally, based on the general solution in the case of distinct eigenvalues and the specific solution for density functionally gradient media, two kinds of beam problems with body forces depending only on the z or x coordinate are solved by the trial-and-error method.

Analytical solution of the Cattaneo - Vernotte equation (non-Fourier heat conduction)

  • Choi, Jae Hyuk;Yoon, Seok-Hun;Park, Seung Gyu;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.389-396
    • /
    • 2016
  • The theory of Fourier heat conduction predicts accurately the temperature profiles of a system in a non-equilibrium steady state. However, in the case of transient states at the nanoscale, its applicability is significantly limited. The limitation of the classical Fourier's theory was overcome by C. Cattaneo and P. Vernotte who developed the theory of non-Fourier heat conduction in 1958. Although this new theory has been used in various thermal science areas, it requires considerable mathematical skills for calculating analytical solutions. The aim of this study was the identification of a newer and a simpler type of solution for the hyperbolic partial differential equations of the non-Fourier heat conduction. This constitutes the first trial in a series of planned studies. By inspecting each term included in the proposed solution, the theoretical feasibility of the solution was achieved. The new analytical solution for the non-Fourier heat conduction is a simple exponential function that is compared to the existing data for justification. Although the proposed solution partially satisfies the Cattaneo-Vernotte equation, it cannot simulate a thermal wave behavior. However, the results of this study indicate that it is possible to obtain the theoretical solution of the Cattaneo-Vernotte equation by improving the form of the proposed solution.

성층화된 축열조의 1차원모델에 대한 해석적인 해 (Analytical Solutions to a One-Dimensional Model for Stratified Thermal Storage Tanks)

  • 유호선;박이동
    • 설비공학논문집
    • /
    • 제7권1호
    • /
    • pp.42-51
    • /
    • 1995
  • In order to establish a theoretical basis for the analyses of transient behaviors in stratified thermal storage tanks, analytical approaches to an improved one-dimensional model are made. In the present model the storage tank is treated as a finite region with an adiabatic tank exit, whereas it has been considered as a simple semi-infinite region previously. Application of the Laplace transformation and the Inversion theorem to the governing equations makes it possible to obtain an exact infinite-series solution, which is convergent only at sufficiently large time. Accordingly a complementary solution which is available for short times, i.e., the time range of this study is sought by an approximate method. The approximate solution which is rigorously validated through the examination of neglected terms in the solution procedure agrees quite well with the exact one. Moreover, it is simpler to use and more convenient to interpret the physical meaning of the solution. Comparison of the present solution with the previous ones shows relatively large difference near the tank bottom, which results from the more realistic boundary condition adopted in the present model. Some representative results by the approximate solution including effects of the Peclet number on temperature distrbutions are illustrated to show the utility of this study. In consequence, it is expected that the present results based on the improved model replace the foregoing ones as a new theoretical reference for studies of thermal stratification fields.

  • PDF

멱급수를 이용한 완경사 방정식의 해 (The Solution of Mild-Slope Equation using Power Series)

  • 정태화;이승오;박진호;조용식
    • 한국방재학회 논문집
    • /
    • 제8권1호
    • /
    • pp.133-138
    • /
    • 2008
  • 외해에서 내습하는 파랑 자료를 분석하는 일은 연안에서 발생하는 문제를 해결함에 있어 기본이 되기 때문에 매우 중요하다. 파랑을 해석하는 방법에는 크게 수치 모델을 이용하는 방법과 해석 해를 이용하는 방법이 있다. 수치 모델의 경우, 다양한 지형과 파랑 조건에 대해 적용할 수 있다는 장점이 있지만 수치 오차를 고려해야 하는 번거로움이 있다. 반면, 해석 해의 경우 수치 오차 없이 빠르고 정확하게 해를 구할 수 있다는 장점이 있지만 특정한 지형 및 파랑 조건에서만 성립한다는 단점이 있다. 본 연구에서는 수치적인 기법과 해석적인 접근을 혼합하여 수치 오차를 최소화시키면서 다양한 조건에 적용이 가능한 완경사 방정식의 해를 유도하였다. 유도된 해를 기존의 수치 해와 비교한 결과 매우 잘 일치한다는 알 수 있었다.

An analytical analysis of a single axially-loaded pile using a nonlinear softening model

  • Wu, Yue-dong;Liu, Jian;Chen, Rui
    • Geomechanics and Engineering
    • /
    • 제8권6호
    • /
    • pp.769-781
    • /
    • 2015
  • The skin friction of a pile foundation is important and essential for its design and analysis. More attention has been given to the softening behaviour of skin friction of a pile. In this study, to investigate the load-transfer mechanism in such a case, an analytical solution using a nonlinear softening model was derived. Subsequently, a load test on the pile was performed to verify the newly developed analytical solution. The comparison between the analytical solution and test results showed a good agreement in terms of the axial force of the pile and the stress-strain relationship of the pile-soil interface. The softening behaviour of the skin friction can be simulated well when the pile is subjected to large loads; however, such behaviour is generally ignored by most existing analytical solutions. Finally, the effects of the initial shear modulus and the ratio of the residual skin friction to peak skin friction on the load-settlement curve of a pile were investigated by a parametric analysis.

Analytical and numerical study of temperature stress in the bi-modulus thick cylinder

  • Gao, Jinling;Huang, Peikui;Yao, Wenjuan
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.81-92
    • /
    • 2017
  • Many materials in engineering exhibit different modulus in tension and compression, which are known as bi-modulus materials. Based on the bi-modulus elastic theory, a modified semi-analytical model, by introducing a stress function, is established in this paper to study the mechanical response of a bi-modulus cylinder placed in an axisymmetric temperature field. Meanwhile, a numerical procedure to calculate the temperature stresses in bi-modulus structures is developed. It is proved that the bi-modulus solution can be degenerated to the classical same modulus solution, and is in great accordance with the solutions calculated by the semi-analytical model proposed by Kamiya (1977) and the numerical solutions calculated both by the procedure complied in this paper and by the finite element software ABAQUS, which demonstrates that the semi-analytical model and the numerical procedure are accurate and reliable. The result shows that the modified semi-analytical model simplifies the calculation process and improves the speed of computation. And the numerical procedure simplifies the modeling process and can be extended to study the stress field of bi-modulus structures with complex geometry and boundary conditions. Besides, the necessity to introduce the bi-modulus theory is discussed and some suggestions for the qualitative analysis and the quantitative calculation of such structure are proposed.