• 제목/요약/키워드: Analytical Modeling

검색결과 1,037건 처리시간 0.026초

Efficiency Analysis of a Ladder Multilevel Converter with the Use of the Equivalent Continuous Model

  • Lopez, Andres;Patino, Diego;Diez, Rafael
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1130-1138
    • /
    • 2014
  • This study analyzes a ladder multilevel converter (double ladder topology) with the use of a new averaging modeling technique. This technique introduces an analytical method to compute for the switching losses and is used to conduct an in-depth analysis of the influence of the switching frequency and parasitic resistance of components on converter efficiency. The obtained results enable the selection of switches and switching frequency to minimize losses. Moreover, simulation results and experimental measurements validate the analytical calculations.

Strain Rate Self-Sensing for a Cantilevered Piezoelectric Beam

  • Nam, Yoonsu;Sasaki, Minoru
    • Journal of Mechanical Science and Technology
    • /
    • 제16권3호
    • /
    • pp.310-319
    • /
    • 2002
  • This paper deals with the analytical modeling, and the experimental verification of the strain rate self-sensing method using a hybrid adaptive filter for a cantilevered piezoelectric beam. The piezoelectric beam consists of two laminated lead zirconium titanates (PZT) on a metal shim. A mathematical model of the beam dynamics is derived by Hamilton's principle and the accuracy of the modeling is verified through the comparison with experimental results. For the strain rate estimation of the cantilevered piezoelectric beam, a self-sensing mechanism using a hybrid adaptive filter is considered. The discrete parts of this mechanism are realized by the DS1103 DSP board manufactured by dSPACE$\^$TM/. The efficacy of this method is investigated through the comparison of experimental results with the predictions from the derived analytical model.

Development of new predictive analysis in the orthogonal metal cutting process by utilization of Oxley's machining theory

  • Abdelkader, Karas;Mohamed, Bouzit;Mustapha, Belarbi;Redha, Mazouzi
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1467-1481
    • /
    • 2015
  • This paper presents a contribution to improving an analytical thermo-mechanical modeling of Oxley's machining theory of orthogonal metals cutting, which objective is the prediction of the cutting forces, the average stresses, temperatures and the geometric quantities in primary and secondary shear zones. These parameters will then be injected into the developed model of Karas et al. (2013) to predict temperature distributions at the tool-chip-workpiece interface. The amendment to Oxley's modified model is the reduction of the estimation of time-related variables cutting process such as cutting forces, temperatures in primary and secondary shear zones and geometric variables by the introduction the constitutive equation of Johnson-Cook model. The model-modified validation is performed by comparing some experimental results with the predictions for machining of 0.38% carbon steel.

Analytical modeling of masonry infills with openings

  • Kakaletsis, D.
    • Structural Engineering and Mechanics
    • /
    • 제31권4호
    • /
    • pp.423-437
    • /
    • 2009
  • In order to perform a step-by-step force-displacement response analysis or dynamic time-history analysis of large buildings with masonry infilled R/C frames, a continuous force-deformation model based on an equivalent strut approach is proposed for masonry infill panels containing openings. The model, which is applicable for degrading elements, can be implemented to replicate a wide range of monotonic force-displacement behaviour, resulting from different design and geometry, by varying the control parameters of the model. The control parameters of the proposed continuous model are determined using experimental data. The experimental program includes fifteen 1/3-scale, single-story, single-bay reinforced concrete frame specimens subjected to lateral cyclic loading. The parameters investigated include the shape, the size, the location of the opening and the infill compressive strength. The actual properties of the infill and henceforth the characteristics needed for the diagonal strut model are based on the assessment of its lateral resistance by the subtraction of the response of the bare frame from the response of the infilled frame.

Analysis of Short Channel Effects Using Analytical Transport Model For Double Gate MOSFET

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • 제5권1호
    • /
    • pp.45-49
    • /
    • 2007
  • The analytical transport model in subthreshold regime for double gate MOSFET has been presented to analyze the short channel effects such as subthreshold swing, threshold voltage roll-off and drain induced barrier lowering. The present approach includes the quantum tunneling of carriers through the source-drain barrier. Poisson equation is used for modeling thermionic emission current, and Wentzel-Kramers-Brillouin approximations are applied for modeling quantum tunneling current. This model has been used to investigate the subthreshold operations of double gate MOSFET having the gate length of the nanometer range with ultra thin gate oxide and channel thickness under sub-20nm. Compared with results of two dimensional numerical simulations, the results in this study show good agreements with those for subthreshold swing and threshold voltage roll-off. Note the short channel effects degrade due to quantum tunneling, especially in the gate length of below 10nm, and DGMOSFETs have to be very strictly designed in the regime of below 10nm gate length since quantum tunneling becomes the main transport mechanism in the subthreshold region.

복잡한 3차원 곡면을 가지는 플라스틱 사출 성형품을 위한 진원도의 수학적 모델링 (Mathematical Modeling of the Roundness for Plastic Injection Mold Parts with Complicated 3D curvatures)

  • 윤선진
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.6-11
    • /
    • 2019
  • In this study, we constructed the mathematical model to evaluate the roundness for plastic injection mold parts with complicated 3D curvatures. Mathematically we started off from the equation of circle and successfully derived an analytical solution so as to minimize the area of the residuals. On the other hand, we employed the numerical method the similar optimization process for the comparison. To verify the mathematical models, we manufactured and used a ball valve type plastic parts to apply the derived model. The plastic parts was fabricated under the process conditions of 220-ton injection mold machine with a raw material of polyester. we experimentally measured (x, y) position using 3D contact automated system and applied two mathematical methods to evaluated the accuracy of the mathematical models. We found that the analytical solution gives better accuracy of 0.4036 compared to 0.4872 of the numerical solution. The numerical method however may give adaptiveness and versatility for optional simulations such as a fixed center.

Modeling of the lateral stiffness of masonry infilled steel moment-resisting frames

  • Lemonis, Minas E.;Asteris, Panagiotis G.;Zitouniatis, Dimitrios G.;Ntasis, Georgios D.
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.421-429
    • /
    • 2019
  • This paper presents an analytical model for the estimation of initial lateral stiffness of steel moment resisting frames with masonry infills. However, rather than focusing on the single bay-single storey substructure, the developed model attempts to estimate the global stiffness of multi-storey and multi-bay frames, using an assembly of equivalent springs and taking into account the shape of the lateral loading pattern. The contribution from each infilled frame panel is included as an individual spring, whose properties are determined on the basis of established diagonal strut macro-modeling approaches from the literature. The proposed model is evaluated parametrically against numerical results from frame analyses, with varying number of frame stories, infill openings, masonry thickness and modulus of elasticity. The performance of the model is evaluated and found quite satisfactory.

대형트럭 동특성 해석을 위한 다판 스프링의 모델링 (Modeling of a Multi-Leaf Spring for Dynamic Characteristics Analysis of a Large Truck)

  • 문일동;오석형;오재윤
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.147-153
    • /
    • 2004
  • This paper presents an analytical modeling technique fer representing a hysteretic behavior of a multi-leaf spring used for a large truck. It divides a nonlinear hysteretic curve of the multi-leaf spring into four parts; loading part, unloading part and two transition parts. It provides conditions fur branching to a part of the curve corresponding to a current multi-leaf spring status. This paper also presents a computational modeling technique of the multi-leaf spring. It models the multi-leaf spring with three links and a shackle. It assumes those components as rigid bodies. The links are connected by rotational joints, and have rotational springs at the joints. The spring constants of the rotational springs are computed with a force from the analytical model of the hysteretic curve of the multi-leaf spring. Static and dynamic tests are performed to verify the reliability of the presented techniques. The tests are performed with various amplitudes and excitation frequencies. The hysteretic curves from the tests are compared with those from the simulations. Since th e presented techniques reproduce the hysteretic characteristic of the multi -leaf spring faithfully, they contribute on improving the reliability of the computational model of a large truck.

수중로봇팔의 동역학 모델링과 동적 조작도 해석 (Dynamic Modeling and Manipulability Analysis of Underwater Robotic Arms)

  • 전봉환;이지홍;이판묵
    • 제어로봇시스템학회논문지
    • /
    • 제11권8호
    • /
    • pp.688-695
    • /
    • 2005
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The manipulability is a functionality of manipulator system in a given configuration under the limits of joint ability with respect to the task required to be performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method is presented. The dynamic equation of motion of underwater manipulator is derived based on the Lagrange-Euler equation considering with the hydrodynamic forces caused by added mass, buoyancy and hydraulic drag. The hydrodynamic drag term in the equation is established as analytical form using Denavit-Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based oil manipulability ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torques in joint space, while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid as much as gravity and velocity dependent forces in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.