• Title/Summary/Keyword: Analytic surface

Search Result 310, Processing Time 0.022 seconds

Numerical simulation of wave slamming on 3D offshore platform deck using a coupled Level-Set and Volume-of-Fluid method for overset grid system

  • Zhao, Yucheng;Chen, Hamn-Ching;Yu, Xiaochuan
    • Ocean Systems Engineering
    • /
    • v.5 no.4
    • /
    • pp.245-259
    • /
    • 2015
  • The numerical simulation of wave slamming on a 3D platform deck was investigated using a coupled Level-Set and Volume-of-Fluid (CLSVOF) method for overset grid system incorporated into the Finite-Analytic Navier-Stokes (FANS) method. The predicted slamming impact forces were compared with the corresponding experimental data. The comparisons showed that the CLSVOF method is capable of accurately predicting the slamming impact and capturing the violent free surface flow including wave slamming, wave inundation and wave recession. Moreover, the capability of the present CLSVOF method for overset grid system is a prominent feature to handle the prediction of wave slamming on offshore structure.

Numerical Analysis of the Electromagnetic Waves scattered from a dielectric sphere by the BEM (경계요소법에 의한 3차원 유전체 구의 산란파 수치해석)

  • 김정혜
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.64-68
    • /
    • 1990
  • Boundary element method using linear basis function is applied to obtain fields scattered from a 3-D dielectric sphere. Electric field integral equation is used on the surfaces of the dielectric material where its surface is discretized into trilateral cells. For plane wave incidence, scattered fields by a dielectric sphere is calculated and compared with its analytic solution. The total electric fields are calculated on the great circle of the sphere boundary as well as the outside of the sphere in the plane of the wave vector and the polarization vector of the incident electric field.

  • PDF

Boundary element analysis of stress intensity factors for the bimaterial interface cracks (접합재료 경계면 균열의 응력세기계수에 대한 경계요소해석)

  • 이강용;최형집
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.884-894
    • /
    • 1987
  • Stress intensity factors for the bimaterial interface cracks are determined by the boundary element method employing the multiregion technique along with the double-point concept. For this purpose, the formulas relating the stress intensity factors to the crack surface displacements, which are applicable to both the homogeneous and the bimaterial systems, are derived and the accuracy of the results is discussed using the preexisting analytic solutions. Besides, the stress intensity factors for the edge-cracked bimaterial plates are computed with various crack lengths and shear modulus ratios under the biaxial and the uniaxial loadings, respectively, to demonstrate the dependence of stress intensity factors on the loading conditions and the material properties.

Comparison of Performance between Symmetric Trapezoidal Fins and Asymmetric Trapezoidal Fins (대칭 사다리꼴 핀과 비대칭 사다리꼴 핀의 성능 비교)

  • Kang, Hyungsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.205-213
    • /
    • 2016
  • Heat loss and fin efficiency of symmetric and asymmetric trapezoidal fins with variable slope of fin's top surface are obtained by using a two-dimensional analytic method. Shapes of symmetric and asymmetric fins are changed from rectangular through trapezoidal to triangular by adjusting the fin shape factor. The ratio of symmetric trapezoidal fin length to asymmetric trapezoidal fin length is presented as a function of fin base height and convection characteristic number. The ratio of symmetric trapezoidal fin efficiency to asymmetric trapezoidal fin efficiency is presented as a function of the fin base height and fin shape factor. One of results shows that asymmetric trapezoidal fin length is shorter than symmetric trapezoidal fin length (i.e., asymmetric trapezoidal fin volume is smaller than symmetric trapezoidal fin volume) for the same heat loss when the fin base height and fin shape factor are the same.

Performance Analysis of a Geometrically Asymmetric Trapezoidal Fin for an Enhanced Heat Exchanger (향상된 열교환기를 위한 기하학적 비대칭 사다리꼴 핀의 성능 해석)

  • Song, Nyeon-Joo;Kang, Hyung-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.24-31
    • /
    • 2011
  • Performance of the asymmetric trapezoidal fin with various upper lateral surface slopes is investigated by using the two-dimensional analytic method. For a fin base boundary condition, convection from the inner fluid to the inner wall, conduction from the inner wall to the fin base and conduction through the fin base are considered. Heat loss and fin efficiency are represented as a function of the fin base thickness, base height, inner fluid convection characteristic number, fin tip length and fin shape factor. One of the results shows that heat loss increases while fin efficiency decreases as the fin shape factor increases.

A Study on Vision Sensor-based Measurement of Die Location for Its Remodeling (금형 개조 용접시 시각 센서를 이용한 대상물 위치 파악에 관한 연구)

  • Kim, Jitae;Na, Suck-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.141-146
    • /
    • 2000
  • We introduce the algorithms of 3-D position estimation using a laser sensor for automatic die remodeling. First, a vision sensor based on the optical triangulation was used to collect the range data of die surface. Second, line vector equations were constructed by the measured range data, and an analytic algorithm was proposed for recognizing the die location with these vector equations. This algorithm could make the transformation matrix without any specific corresponding points. To ascertain this algorithm, folded SUS plate was measured by the laser vision sensor attached to a 3-axis cartesian manipulator and the transformation matrix was calculated.

  • PDF

Current Equation Loop Design of Muti-channel Direct Drive Valve Actuation (다중채널 직접구동 엑츄에이터의 구동전류 동일화 루프 설계)

  • Nam, Yoonsu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.162-169
    • /
    • 2000
  • A Direct Drive Valve(DDV) hydraulic actuation system which is commonly used as an aircraft's control surface driving actuator has multi-loop control structure to ensure its safety operation. However, because of not perfect matching of one self channel characteristics with the others, the servo valve driving current of each channel can be widely different. Therefore, the long-time use of DDV actuator without any correction of these channel current offsets will cause the problem of performance or life expectancy degradation due to unwanted heats in the linear motor. A current equalization loop structure which can minimizes current offsets between channels is introduced and designed. The performance of the current equalization loop is investigated and verified through the analytic and experimental ways.

  • PDF

Multi-stage Finite Element Inverse Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio (세장비가 큰 타원형 컵 성형 공정의 다단계 유한요소 역해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.304-312
    • /
    • 2000
  • An inverse finite element approach is employed to efficiently design the optimum blank shape and intermediate shapes from the desired final shape in multi-stage elliptic cup drawing processes. The multi-stage deep-drawing process is difficult to design with the conventional finite element analysis since the process is very complicate with the conventional finite element analysis since the process is very complicated with intermediate shapes and the numerical analysis undergoes the convergence problem even with tremendous computing time. The elliptic cup drawing process needs much effort to design sine it requires full three-dimensional analysis. The inverse analysis is able to omit all complicated and tedious analysis procedures for the optimum process design. In this paper, the finite element inverse analysis provides the thickness strain distribution of each intermediate shape through the multi-stage analysis. The multi-stage analysis deals with the convergence among intermediate shapes and the corresponding sliding constraint surfaces that are described by the analytic function of merged-arc type surfaces.

  • PDF

Analytical Evaluation of Beam-Bar Bond and Anchorage in Beam-column joints under Cyclic Loading (주기하중을 받는 보-기둥 접합부내 보주철근 부착 및 정착의 해석적 평가)

  • Oh Soo-Yeun;Lee Joo-Ha;Yoon Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.510-513
    • /
    • 2004
  • The objectives of this research are to evaluate the effect of the compressive strength of concrete, reinforcing bar size, spacing of column transverse bars related to the concrete confinement effects on anchorage bond strength and bond behavior of beam-column joints subjected to cyclic loading and to predict the bond behavior of beam-column joints according to the variables by Finite Element Analysis appling the interface element between concrete and reinforced bar surface in a three-dimensional configuration. This paper shows that to verify the results by three-dimensional nonlinear finite element analysis appling a interface element, the test results that were already conducted are compared with analytic results. The behavior of bond and anchorage of beam bar is expressed by a local bond stress-slip relationship and the failure mode of bond is predicted by principal stress contour.

  • PDF

Numerical study of Three-Dimensional Characteristics of Flow Field and Compression Wave Induced by High Speed Train Entering into a Tunnel (터널에 진입하는 고속전철에 의한 3차원 점성유동과 압축파 특성에 관한 수치해석적 연구)

  • Shin C. H.;Park W. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.91-98
    • /
    • 2000
  • The three-dimensional unsteady compressible Full Navier-Stokes equation solver with sliding multi-block method has been applied to analyze three dimensional characteristics of the flow field and compression wave around the high speed train which Is entering into a tunnel. The numerical scheme of AF + ADI was used to efficiently solve Navier-Stokes equations in the curvilinear coordinate system. The vortex formation around the nose region was found and the generation of compression wave due to the blockage effects was observed ahead of the train in the form of plane wave. The three dimensional characteristics of the flow field compared to the analytic results were discussed in detail. The variation of pressure of tunnel wall surface and velocity profile of the train are identified as the train enters into a tunnel. The changes in aerodynamic forces and streamlines of each specific sections are also discussed and presented.

  • PDF