• Title/Summary/Keyword: Analytic surface

Search Result 310, Processing Time 0.032 seconds

Design of ceramics powder compaction process parameters (Part Ⅱ : Optimization) (세라믹스 분말 가압 성형 공정 변수설계(2부: 최적화))

  • Kim J. L.;Keum Y. T.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.27-33
    • /
    • 2005
  • In this study, the process parameters in ceramics powder compaction are optimized for getting high relative densities of ceramic products. To find optimized parameters, the analytic models of powder compaction are firstly prepared by 2-dimensional rod arrays with random green densities using a quasi-random multiparticle array. Then, using finite element method, the changes in relative densities are analyzed by varying the size of Al₂O₃ particle, the amplitude of cyclic compaction, and the coefficient of friction, which influence the relative density in cyclic compactions. After the analytic function of relative density associated process parameters are formulated by aid of the response surface method, the optimal conditions in powder compaction process are found by the grid search method. When the particle size of Al₂O₃ is 22.5 ㎛, the optimal parameters for the amplitude of cyclic compaction and the coefficient of friction are 75 MPa and 0.1103, respectively. The maximum relative density is 0.9390.

Predictions of Fouling Phenomena in the Axial Compressor of Gas Turbine Using an Analytic Method (해석적 방법을 이용한 가스터빈 축류 압축기의 파울링 현상 해석)

  • Song, Tae-Won;Kim, Dong-Seop;Kim, Jae-Hwan;Son, Jeong-Rak;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1721-1729
    • /
    • 2001
  • The performance of gas turbines is decreased as their operating hours increase. Fouling in the axial compressor is one of main reasons for the performance degradation of gas turbine. Airborne particles entering with air at the inlet into compressor adhere to the blade surface and result in the change of the blade shape, which is closely and sensitively related to the compressor performance. It is difficult to exactly analyze the mechanism of the compressor fouling because the growing process of the fouling is very slow and the dimension of the fouled depth on the blade surface is very small compared with blade dimensions. In this study, an improved analytic method to predict the motion of particles in compressor cascades and their deposition onto blade is proposed. Simulations using proposed method and their comparison with field data demonstrate the feasibility of the model. It if found that some important parameters such as chord length, solidity and number of stages, which represent the characteristics of compressor geometry, are closely related to the fouling phenomena. And, the particle sloe and patterns of their distributions are also Important factors to predict the fouling phenomena in the axial compressor of the gas turbine.

Mechanistic Pressure Jump Terms based on the System Eigenvalues of Two-Fluid Model for Bubbly Flow (2-유체 모델의 고유치에 근거한 기포류에서의 계면압력도약항)

  • Chung, M.S.;Lee, W.J.;Lee, S.J.;Song, C.H.;Ha, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.81-86
    • /
    • 2001
  • Interfacial pressure jump terms based on the physics of phasic interface and bubble dynamics are introduced into the momentum equations of the two-fluid model for bubbly flow. The pressure discontinuity across the phasic interface due to the surface tension force is expressed as the function of fluid bulk moduli and bubble radius. The consequence is that we obtain from the system of equations the real eigenvalues representing the void-fraction propagation speed and the pressure wave speed in terms of the bubble diameter. Inversely, we obtain an analytic closure relation for the radius of bubbles in the bubbly flow by using the kinematic wave speed given empirically in the literature. It is remarkable to see that the present mechanistic model using this practical bubble radius can indeed represent both the mathematical well-posedness and the physical wave speeds in the bubbly flow.

  • PDF

Research on the Inverse Heat Conduction Problem for Thermal Analysis of a Large LPG Engine Piston (대형 LPG 엔진 피스톤의 온도 분포 해석을 위한 열전도 역문제에 관한 연구)

  • 이부윤;박철우;최경호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.146-159
    • /
    • 2002
  • An efficient method to predict the convection heat transfer coefficients on the top surface of the engine piston is proposed. The method is based on the inverse method of the thermal conduction problem and uses a numerical optimization technique. In the method, the heat transfer coefficients are numerically obtained so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. The method can be effectively used to analyze the temperature distribution of engine pistons in case when application of prescribed-temperature boundary condition is not reasonable because of insufficient number of measured temperatures. A hollow sphere problem with an analytic solution is taken as a simple example and accuracy and efficiency is demonstrated. The method is applied to a practical large liquid petroleum gas(LPG) engine piston and the heat transfer coefficients on the top surface of the piston is successfully calculated. Resulting analyzed temperature favorably coincides with measured temperature.

ANALYTIC EXPRESSION OF HYDRAULIC FALL IN THE FREE SURFACE FLOW OF A TWO-LAYER FLUID OVER A BUMP

  • Park, Jeong-Whan;Hong, Bum-Il;Ha, Sung-Nam
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.479-490
    • /
    • 1997
  • We consider long nonlinear waves in the two-layer flow of an inviscid and incompressible fluid bounded above by a free surface and below by a rigid boundary. The flow is forced by a bump on the bottom. The derivation of the forced KdV equation fails when the density ratio h and the depth ratio $\rho$ yields a condition $1 + h\rho = (2-h)((1-h)^2 + 4\rho h)^{1/2}$. To overcome this difficulty we derive a forced modified KdV equation by a refined asymptotic method. Numerical solutions are given and hydraulic fall solution of a two layer fluid is expressed analytically in the case that derivation of the forced KdV (FKdV) equation fails.

  • PDF

Optimal Design of FRP Taper Spring Using Response Surface Analysis (반응표면 분석법을 이용한 FRP 테이퍼 판 스프링의 최적설계)

  • 오상진;이윤기;윤희석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.676-679
    • /
    • 1997
  • The present paper is concerned with the optimal deslgn that the static spring rate of the fiber-reinforcement composite spring is fitted to that of the steel leaf spring. The thickness and w~dth of springs were selected as deslgn variables. And object functions of the regression model were obtained through the analysis with a common analytic program. After regression coefficients were calculated to get functions of the regression model, optimal solutions were calculated with DOT. E-GlassIEpoxy and CarbonIEpoxy were used as fiber reinforcement materials in the design, which were compared and analyzed with the steel leaf spring. It was found that the static spring rate of the optimal model was almost similar to that of the existing spring.

  • PDF

Generation of Thermoelastic Waves by Irradiating a Metal Slab with a Line-Focused Laser Pulse

  • Yoo, Jae-Gwon;Baik, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.181-189
    • /
    • 2006
  • A 2D finite-element numerical simulation has been developed to investigate the generation of ultrasonic waves in a homogeneous isotropic elastic slab under a line-focused laser irradiation. Discussing the physical processes involved in the thermoelastic phenomena, we describe a model for the pulsed laser generation of ultrasound in a metal slab. Addressing an analytic method, on the basis of an integral transform technique, for obtaining the solutions of the elastodynamic equation, we outline a finite element method for a numerical simulation of an ultrasonic wave propagation. We present the numerical results for the displacements and the stresses generated by a line-focused laser pulse on the surface of a stainless steel slab.

Multi-stage Finite Element Inverse Analysis of elliptic Cup Drawing with large aspect ratio considering Intermediate Sliding Constraint Surface (중간 미끄럼 구속면을 고려한 세장비가 큰 타원형 컵 성형 공정의 다단계 유한요소 역해석)

  • 김세호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.21-25
    • /
    • 2000
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of expense and computation time For multi-stage sheet metal forming processes numerical analysis is expense difficult to carry out the to its complexities and convergence problem. It also requires lots of computation time. For the analysis of elliptic cup with large aspect ratio intermediate sliding constraint surfaces are difficult to describe. in this paper multi-stage finite element inverse analysis is applied to multi-stage elliptic cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. To describe intermediate sliding constraint surfaces an analytic scheme is introduced to deal with merged-arc type sliding surfaces.

  • PDF

Aerodynamic Heating Test of Payload Fairing of KSLV-I (KSLV-I 페어링 공력 가열 시험)

  • Choi, Sang-Ho;Kim, Seong-Lyong;Kim, In-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.448-451
    • /
    • 2008
  • KARI is developing a satellite launch vehicle that is called KSLV(Korea Space Launch Vehicle)-I. During the flight, launch vehicles are exposed to aerodynamic heating conditions while flying at high Mach numbers in the atmosphere. KARI constructed Aerodynamic Thermal Simulation Facility to simulate aerodynamic heating on the ground. ATSF is a facility that can simulate given temperature profile using about 4,000 halogen heaters on fairing model. Aerodynamic heating profile is got from result of thermal analysis using MINIVER, Thermal Desktop, and SINDA/FLUINT. Aerodynamic heating test of fairing of KSLV-I was done using engineering model of payload fairing and Aerodynamic Thermal Simulation Facility. It was found that thermal analytic results show good agreement with aerodynamic heating test results within 6$^{\circ}$C at fairing inner surface. Also it was confirmed that maximum temperature of fairing nose-cone inner surface during flight is lower than allowable temperature limit.

  • PDF

Numerical Study for the Effect of Engine Exhaust Gas on the Airframe of Smart UAV (스마트무인기 엔진 배기가스가 기체에 미치는 영향에 관한 수치적 연구)

  • Lee, Chang-Ho;Kim, Cheol-Wan;Kim, Jai-Moo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.464-467
    • /
    • 2008
  • An ejector is designed for the purpose of engine bay cooling. The primary flow of the ejector is the exhaust gas of the PW206C turboshaft engine. The mass flow of secondary flow is calculated by using the approximate analytic equation. And the effect of exhaust gas flow on the fuselage surface is investigated by using the Fluent Code. Three types of exhaust duct shape were compared in the viewpoint of surface temperature and aerodynamic drag. As a result, exhaust duct shape P3 shows minimum interference of exhaust gas and fuselage and minimum increment of drag among the three candidate shapes.

  • PDF