• Title/Summary/Keyword: Analysis of potential profiles

Search Result 239, Processing Time 0.026 seconds

Evaluating the Potential of Korean Mudflat-Derived Penicillium nalgiovense SJ02 as a Fungal Starter for Manufacturing Fermented Sausage

  • Sujeong Lee;Jeehwan Choe;Minji Kang;Minkyoung Kang;Sooah Kim;Sangnam Oh
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.912-933
    • /
    • 2024
  • The objective of this study was to isolate, identify, and evaluate novel Korean starter cultures for use in fermented sausages. A total of 72 strains were isolated from various indigenous sources, including Nuruk, Jeotgal, and mudflats on the west coast of South Korea. Two strains were identified as Penicillium nalgiovense (SD01 and SJ02), a traditional starter used in the production of fermented sausages. A comparative analysis was performed between SD01 and SJ02 using the commercial starter culture (M600). Strain SJ02 exhibited superior lipolytic and proteolytic activities, as well as an enhanced growth rate at the optimal salinity level of 2% NaCl compared to M600. No significant differences were observed in thiobarbituric acid reactive substances values, sausage colors, and texture properties between SJ02 and M600 fermented sausages, except for adhesiveness. Profiles of mycotoxin-related genes were similar for both strains. Electronic nose analysis revealed distinct aroma profiles between SJ02 and M600 fermented sausages, with a relatively higher levels of propan-2-one and butyl butanoate in SJ02, and a higher level of ethanol and propanal in M600. In electronic tongue analysis, there was no significant differences in taste characteristics between SJ02 and M600. These results indicate that P. nalgiovense SJ02 is a potential starter culture to produce dry fermented sausages, enhancing Korean style cured meat processing industry.

Time-Domain Analysis of Nonlinear Wave-Making Problems by a Submerged Sphere Oscillating with Large Amplitude (대진폭 조화 운동을 하는 잠수구에 의한 비선형 조파문제의 시간영역 해석)

  • Kim, Yong-Jig;Ha, Young-Rok
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.67-74
    • /
    • 2006
  • A high-order spectral/boundary-element method is newly adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time-domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. By the combination of these two methods, the wave-making problems by a submerged sphere oscillating with large amplitude under the free~surface are solved in time-domain. Through the example calculations, nonlinear effects on free-surface profiles and hydrodynamic forces are shown and discussed.

Transcriptomic profiles and their correlations in saliva and gingival tissue biopsy samples from periodontitis and healthy patients

  • Jeon, Yoon-Sun;Cha, Jae-Kook;Choi, Seong-Ho;Lee, Ji-Hyun;Lee, Jung-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.5
    • /
    • pp.313-326
    • /
    • 2020
  • Purpose: This study was conducted to analyze specific RNA expression profiles in gingival tissue and saliva samples in periodontitis patients and healthy individuals, and to determine their correlations in light of the potential use of microarray-based analyses of saliva samples as a periodontal monitoring tool. Methods: Gingival tissue biopsies and saliva samples from 22 patients (12 with severe periodontitis and 10 with a healthy periodontium) were analyzed using transcriptomic microarray analysis. Differential gene expression was assessed, and pathway and clustering analyses were conducted for the samples. The correlations between the results for the gingival tissue and saliva samples were analyzed at both the gene and pathway levels. Results: There were 621 differentially expressed genes (DEGs; 320 upregulated and 301 downregulated) in the gingival tissue samples of the periodontitis group, and 154 DEGs (44 upregulated and 110 downregulated) in the saliva samples. Nine of these genes overlapped between the sample types. The periodontitis patients formed a distinct cluster group based on gene expression profiles for both the tissue and saliva samples. Database for Annotation, Visualization and Integrated Discovery analysis revealed 159 enriched pathways from the tissue samples of the periodontitis patients, as well as 110 enriched pathways In the saliva samples. Thirty-four pathways overlapped between the sample types. Conclusions: The present results indicate the possibility of using the salivary transcriptome to distinguish periodontitis patients from healthy individuals. Further work is required to enhance the extraction of available RNA from saliva samples.

Bioremediation Potential of a Tropical Soil Contaminated with a Mixture of Crude Oil and Production Water

  • Alvarez, Vanessa Marques;Santos, Silvia Cristina Cunha dos;Casella, Renata da Costa;Vitae, RonaIt Leite;Sebastin, Gina Vazquez;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1966-1974
    • /
    • 2008
  • A typical tropical soil from the northeast of Brazil, where an important terrestrial oil field is located, was accidentally contaminated with a mixture of oil and saline production water. To study the bioremediation potential in this area, molecular methods based on PCR-DGGE were used to determine the diversity of the bacterial communities in bulk and in contaminated soils. Bacterial fingerprints revealed that the bacterial communities were affected by the presence of the mixture of oil and production water, and different profiles were observed when the contaminated soils were compared with the control. Halotolerant strains capable of degrading crude oil were also isolated from enrichment cultures obtained from the contaminated soil samples. Twenty-two strains showing these features were characterized genetically by amplified ribosomal DNA restriction analysis (ARDRA) and phenotypically by their colonial morphology and tolerance to high NaCl concentrations. Fifteen ARDRA groups were formed. Selected strains were analyzed by 16S rDNA sequencing, and Actinobacteria was identified as the main group found. Strains were also tested for their growth capability in the presence of different oil derivatives (hexane, dodecane, hexadecane, diesel, gasoline, toluene, naphthalene, o-xylene, and p-xylene) and different degradation profiles were observed. PCR products were obtained from 12 of the 15 ARDRA representatives when they were screened for the presence of the alkane hydroxylase gene (alkB). Members of the genera Rhodococcus and Gordonia were identified as predominant in the soil studied. These genera are usually implicated in oil degradation processes and, as such, the potential for bioremediation in this area can be considered as feasible.

Long Non-coding RNAs are Differentially Expressed in Hepatocellular Carcinoma Cell Lines with Differing Metastatic Potential

  • Fang, Ting-Ting;Sun, Xiao-Jing;Chen, Jie;Zhao, Yan;Sun, Rui-Xia;Ren, Ning;Liu, Bin-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10513-10524
    • /
    • 2015
  • Background: Metastasis is a major reason for poor prognosis in patients with cancer, including hepatocellular carcinoma (HCC). A salient feature is the ability of cancer cells to colonize different organs. Long non-coding RNAs (lncRNAs) play important roles in numerous cellular processes, including metastasis. Materials and Methods: In this study, the lncRNA expression profiles of two HCC cell lines, one with high potential for metastasis to the lung (HCCLM3) and the other to lymph nodes (HCCLYM-H2) were assessed using the Arraystar Human LncRNA Array v2.0, which contains 33,045 lncRNAs and 30,215 mRNAs. Coding-non-coding gene co-expression (CNC) networks were constructed and gene set enrichment analysis (GSEA) was performed to identify lncRNAs with potential functions in organ-specific metastasis. Levels of two representative lncRNAs and one representative mRNA, RP5-1014O16.1, lincRNA-TSPAN8 and TSPAN8, were further detected in HCC cell lines with differing metastasis potential by qRT-PCR. Results: Using microarray data, we identified 1,482 lncRNAs and 1,629 mRNAs that were differentially expressed (${\geq}1.5$ fold-change) between the two HCC cell lines. The most upregulated lncRNAs in H2 were RP11-672F9.1, RP5-1014O16.1, and RP11-501G6.1, while the most downregulated ones were lincRNA-TSPAN8, lincRNA-CALCA, C14orf132, NCRNA00173, and CR613944. The most upregulated mRNAs in H2 were C15orf48, PSG2, and PSG8, while the most downregulated ones were CALCB, CD81, CD24, TSPAN8, and SOST. Among them, lincRNA-TSPAN8 and TSPAN8 were found highly expressed in high lung metastatic potential HCC cells, while lowly expressed in no or low lung metastatic potential HCC cells. RP5-1014O16.1 was highly expressed in high lymphatic metastatic potential HCC cell lines, while lowly expressed in no lymphatic metastatic potential HCC cell lines. Conclusions: We provide the first detailed description of lncRNA expression profiles related to organ-specific metastasis in HCC. We demonstrated that a large number of lncRNAs may play important roles in driving HCC cells to metastasize to different sites; these lncRNAs may provide novel molecular biomarkers and offer a new basis for combating metastasis in HCC cases.

Finite Element Model for Wear Analysis of Conventional Friction Stir Welding Tool

  • Hyeonggeun Jo;Ilkwang Jang;Yeong Gil Jo;Dae Ha Kim;Yong Hoon Jang
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.118-122
    • /
    • 2023
  • In our study, we develop a finite element model based on Archard's wear law to predict the cumulative wear and the evolution of the tool profile in friction stir welding (FSW) applications. Our model considers the rotational and translational behaviors of the tool, providing a comprehensive description of the wear process. We validate the accuracy of our model by comparing it against experimental results, examining both the predicted cumulative wear and the resulting changes to the tool profile caused by wear. We perform a detailed comparison between the predictions of the model and experimental data by manipulating non-dimensional coefficients comprising model parameters, such as element sizes and time increments. This comparison facilitates the identification of a specific non-dimensional coefficient condition that best replicates the experimentally observed cumulative wear. We also directly compare the worn tool profiles predicted by the model using this specific non-dimensional coefficient condition with the profiles obtained from wear experiments. Through this process, we identify the model settings that yield a tool wear profile closely aligning with the experimental results. Our research demonstrates that carefully selecting non-dimensional coefficients can significantly enhance the predictive accuracy of finite element models for tool wear in FSW processes. The results from our study hold potential implications for enhancing tool longevity and welding quality in industrial applications.

Evaluation of DNA Extraction Methods from Low Copy Number (LCN) DNA Samples for Forensic DNA Typing

  • Eom, Yong-Bin
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.229-232
    • /
    • 2009
  • DNA isolation for PCR-based short tandem repeat (STR) analysis is essential to recover high yields of amplifiable DNA from low copy number (LCN) DNA samples. There are different methods developed for DNA extraction from the small bloodstain and gloves, commonly found at crime scenes. In order to obtain STR profiles from LCN DNA samples, DNA extraction protocols, namely the automated $iPrep^{TM}$ $ChargeSwitch^{(R)}$ method, the automated $QIAcube^{TM}$ method, the automated $Maxwell^{(R)}$ 16 DNA $IQ^{TM}$ Resin method, and the manual $QIAamp^{(R)}$ DNA Micro Kit method, were evaluated. Extracted DNA was quantified by the $Quantifiler^{TM}$ Human DNA Quantification Kit and DNA profiled by $AmpFISTR^{(R)}$ $Identifiler^{(R)}$ Kit. Results were compared based on the amount of DNA obtained and the completeness of the STR profiles produced. The automated $iPrep^{TM}$ $ChargeSwitch^{(R)}$ and $QIAcube^{TM}$ methoas produced reproducible DNA of sufficient quantity and quality trom the dried blood spot. This two automated methods showed a quantity and quality comparable to those of the forensic manual standard protocols normally used in our laboratory. In our hands, the automated DNA extraction method is another obvious choice when the forensic case sample available is bloodstain. The findings of this study indicate that the manual simple modified $QIAamp^{(R)}$ DNA Micro Kit method is best method to recover high yields of amplifiable DNA from the numerous potential sources of LCN DNA samples.

  • PDF

Under-Developed and Under-Utilized Eclipsing Binary Model Capabilities

  • Wilson, R.E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.115-121
    • /
    • 2012
  • Existing but largely unused binary star model capabilities are examined. An easily implemented scheme is parameterization of starspot growth and decay that can stimulate work on outer convection zones and their dynamos. Improved precision in spot computation now enhances analysis of very precise data. An existing computational model for blended spectral line profiles is accurate for binary system effects but needs to include damping, thermal Doppler, and other intrinsic broadening effects. Binary star ephemerides had been found exclusively from eclipse timings until recently, but now come also from whole light and radial velocity curves. A logical further development will be to expand these whole curve solutions to include eclipse timings. An attenuation model for circumstellar clouds, with several absorption and scattering mechanisms, has been applied only once, perhaps because the model clouds have fixed locations. However the clouds could be made to move dynamically and be combined into moving streams and disks. An area of potential interest is polarization curve analysis, where incentive for modeling could follow from publication of observed polarization curves. Other recent advances include direct single step solutions for temperatures of both stars of an eclipsing binary and third body kinematics from combined light and velocity curves.

Prognostic Value of an Immune Long Non-Coding RNA Signature in Liver Hepatocellular Carcinoma

  • Rui Kong;Nan Wang;Chun li Zhou;Jie Lu
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.958-968
    • /
    • 2024
  • In recent years, there has been a growing recognition of the important role that long non-coding RNAs (lncRNAs) play in the immunological process of hepatocellular carcinoma (LIHC). An increasing number of studies have shown that certain lncRNAs hold great potential as viable options for diagnosis and treatment in clinical practice. The primary objective of our investigation was to devise an immune lncRNA profile to explore the significance of immune-associated lncRNAs in the accurate diagnosis and prognosis of LIHC. Gene expression profiles of LIHC samples obtained from TCGA database were screened for immune-related genes. The optimal immune-related lncRNA signature was built via correlational analysis, univariate and multivariate Cox analysis. Then, the Kaplan-Meier plot, ROC curve, clinical analysis, gene set enrichment analysis, and principal component analysis were performed to evaluate the capability of the immune lncRNA signature as a prognostic indicator. Six long non-coding RNAs were identified via correlation analysis and Cox regression analysis considering their interactions with immune genes. Subsequently, tumor samples were categorized into two distinct risk groups based on different clinical outcomes. Stratification analysis indicated that the prognostic ability of this signature acted as an independent factor. The Kaplan-Meier method was employed to conduct survival analysis, results showed a significant difference between the two risk groups. The predictive performance of this signature was validated by principal component analysis (PCA). Additionally, data obtained from gene set enrichment analysis (GSEA) revealed several potential biological processes in which these biomarkers may be involved. To summarize, this study demonstrated that this six-lncRNA signature could be identified as a potential factor that can independently predict the prognosis of LIHC patients.

Study on Density Discontinuous Layers of the Kunsan Basin in the Yellow Sea Using Satellite Altimetry Gravity Data (인공위성 해면고도계 중력자료를 이용한 황해 군산분지의 밀도 불연속면에 대한 연구)

  • Kim, Kyong-O;Oh, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.751-759
    • /
    • 2007
  • To better understand the subsurface geological structure of the Kunsan Basin in the Yellow Sea, the mean depths of the density discontinuous layers (DDLs) of the Kunsan Basin were calculated by power spectrum analysis using satellite altimetry gravity data. The calculated mean depths of DDLs were -1.1km, -3.4km, -9.1km and -31.0km. The mean depth of -1.1km DDL was interpreted as regional unconformity shown in about 1 second in two way travel time (TWTT) in the seismic reflection profiles, and the mean depth of -3.4km DDL was also interpreted as top of the acoustic basement in the seismic reflection profiles. Comparing with well data, seismic reflection profiles and regional geology in the study area, the mean depth of -9.1km DDL was interpreted as top of the igneous origin basement. This means that the acoustic basement of the study area is composed mainly of sediments which are disregarded in previous study. The mean depth of -31.0km DDL was interpreted as the Moho discontinuity because this mean depth is similar to one of the normal continental crust thickness. The detection of top of the igneous origin basement suggests that oil gas potential analysis in Kunsan Basin needs to be extended to the deeper part of sediments (acoustic basement).