Browse > Article
http://dx.doi.org/10.5140/JASS.2012.29.2.115

Under-Developed and Under-Utilized Eclipsing Binary Model Capabilities  

Wilson, R.E. (Astronomy Department, University of Florida)
Publication Information
Journal of Astronomy and Space Sciences / v.29, no.2, 2012 , pp. 115-121 More about this Journal
Abstract
Existing but largely unused binary star model capabilities are examined. An easily implemented scheme is parameterization of starspot growth and decay that can stimulate work on outer convection zones and their dynamos. Improved precision in spot computation now enhances analysis of very precise data. An existing computational model for blended spectral line profiles is accurate for binary system effects but needs to include damping, thermal Doppler, and other intrinsic broadening effects. Binary star ephemerides had been found exclusively from eclipse timings until recently, but now come also from whole light and radial velocity curves. A logical further development will be to expand these whole curve solutions to include eclipse timings. An attenuation model for circumstellar clouds, with several absorption and scattering mechanisms, has been applied only once, perhaps because the model clouds have fixed locations. However the clouds could be made to move dynamically and be combined into moving streams and disks. An area of potential interest is polarization curve analysis, where incentive for modeling could follow from publication of observed polarization curves. Other recent advances include direct single step solutions for temperatures of both stars of an eclipsing binary and third body kinematics from combined light and velocity curves.
Keywords
binaries; tarspots; ine profiles; phemerides; ircumstellar attenuation; olarization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bessell MS, UBVRI photometry. II - The Cousins VRI system, its temperature and absolute flux calibration, and relevance for two-dimensional photometry, PASP, 91, 589-607 (1979). http://dx.doi.org/10.1086/130542   DOI
2 Brown JC, McLean IS, Emslie AG, Polarisation by Thomson scattering in optically thin stellar envelopes. II - Binary and multiple star envelopes and the determination of binary inclinations, A&A, 68, 415-427 (1978).
3 Elias NM II, Wilson RE, Olson EC, Aufdenberg JP, Guinan EF, et al., New perspectives on AX monocerotis, ApJ, 484, 394-411 (1997). http://dx.doi.org/10.1086/304299   DOI
4 Wilson RE, Raichur H, Distance and temperature from absolute light curves of three eclipsing binaries, MNRAS, 415, 596-604 (2011). http://dx.doi.org/10.1111/j.1365-2966.2011.18741.x   DOI
5 Wilson RE, Van Hamme W, Distances to four solar neighborhood eclipsing binaries from absolute fluxes, 699, 118-132 (2009). http://dx.doi.org/10.1088/0004-637X/699/1/118   DOI
6 Wilson RE, Van Hamme W, Eclipsing binary modeling advances-recent and on the way, ASPC, 435, 45-56, (2010).
7 Wilson RE, Van Hamme W, Terrell D, Flux calibrations from nearby eclipsing binaries and single stars, ApJ, 723, 1469-1492 (2010). http://dx.doi.org/10.1088/0004-637X/723/2/1469   DOI
8 Wilson RM, A comparative look at sunspot cycles, NASA Technical Paper 2325 (Marshall Space Flight Center, Alabama, 1984).
9 Wronka MD, Caitlin G, Sowell JR, Williamon RM, Orbital solutions and absolute elements of the eclipsing binary EE Aquarii, AJ, 139, 1486-1490 (2010). http://dx.doi.org/10.1088/0004-6256/139/4/1486   DOI
10 Wilson RE, Accuracy and efficiency in the binary star reflection effect, ApJ, 356, 613-622 (1990). http://dx.doi.org/10.1086/168867   DOI
11 Wilson RE, Binary-star light curve models, PASP, 106, 921-941 (1994). http://dx.doi.org/10.1086/133464   DOI
12 Wilson RE, Eb light curve models what's next?, Ap&SS, 296, 197-207 (2005). http://dx.doi.org/10.1007/s10509-005-4444-9   DOI
13 Wilson RE, Devinney EJ, Realization of accurate close-binary light curves: application to MR Cygni, ApJ, 166, 605-620 (1971). http://dx.doi.org/10.1086/150986   DOI
14 Wilson RE, Eclipsing binary solutions in physical units and direct distance estimation, ApJ, 672, 575-589 (2008). http://dx.doi.org/10.1086/523634   DOI
15 Wilson RE, Spotted star light curves with enhanced precision, AJ, 2012 submitted.
16 Wilson RE, Chochol D, Komzik R, Van Hamme W, Pribulla T, et al., Ellipsoidal variable V1197 Orionis: absolute light-velocity analysis for known distance, ApJ, 702, 403-413 (2009). http://dx.doi.org/10.1088/0004-637X/702/1/403   DOI
17 Wilson RE, Liou J-C, Quantitative modeling and impersonal fitting of Algol polarization curves, ApJ, 413, 670-679 (1993). http://dx.doi.org/10.1086/173035   DOI
18 Van Hamme W, Wilson RE, Third-body parameters from whole light and velocity curves, ApJ, 661, 1129-1151 (2007). http://dx.doi.org/10.1086/517870   DOI
19 van Leeuwen F, Validation of the new Hipparcos reduction, A&A, 474, 653-664 (2007). http://dx.doi.org/10.1051/0004-6361:20078357   DOI   ScienceOn
20 Vogt SS, Penrod GD, Hatzes AP, Doppler images of rotating stars using maximum entropy image reconstruction, ApJ, 321, 496-515 (1987). http://dx.doi.org/10.1086/165647   DOI
21 Richards MT, Sharova OI, Agafonov MI, Three-dimensional Doppler tomography of the RS Vulpeculae interacting binary, ApJ, 720, 996-1007 (2010). http://dx.doi.org/10.1088/0004-637X/720/2/996   DOI
22 Williamon RM, Van Hamme W, Torres G, Sowell JR, Ponce VC, The eclipsing binary system AR Monocerotis, AJ, 129, 2798-2805 (2005). http://dx.doi.org/10.1086/430215   DOI
23 Wilson RE, Eccentric orbit generalization and simultaneous solution of binary star light and velocity curves, ApJ, 234, 1054-1066 (1979). http://dx.doi.org/10.1086/157588   DOI
24 Van Hamme W, Samec RG, Gothard NW, Wilson RE, Faulkner DR, et al., CN andromedae: a broken-contact binary?, AJ, 122, 3436-3446 (2001). http://dx.doi.org/10.1086/324110   DOI
25 Mikulasek Z, Zejda M, Janik J, Period analyses without O-C diagrams, Proc IAU, 282, 391-394 (2011). http://dx.doi.org/10.1017/S1743921311027888
26 Perryman MAC, Lindegren L, Kovalevsky J, Hoeg E, Bastian U, et al., The HIPPARCOS catalogue, A&A, 323, L49-L52 (1997).
27 Petrovay K, van Driel-Gesztelyi L, Making sense of sunspot decay. I. Parabolic decay law and Gnevyshev-Waldmeier relation, SoPh, 176, 249-266 (1997).
28 Pettersen BR, Olah K, Sandmann WH, Longterm behaviour of starspots. II. A decade of new starspot photometry of BY Draconis and EV Lacertae, A&AS, 96, 497-504 (1992).
29 Rodono M, Cutispoto G, A long-term program of monitoring active close binaries with the Catania Automated Photometric Telescope, MmSAI, 65, 83-88 (1994).
30 Solanki SK, Sunspots: an overview, A&ARv, 11, 153-286 (2003). http://dx.doi.org/10.1007/s00159-003-0018-4   DOI
31 Kang YW, Wilson RE, Least-squares adjustment of SPOT parameters for three RS CVn binaries, AJ, 97, 848-865 (1989). http://dx.doi.org/10.1086/115031   DOI
32 Livadiotis G, Moussas X, The sunspot as an autonomous dynamical system: a model for the growth and decay phases of sunspots, PhyA, 379, 436-458 (2007). http://dx.doi.org/10.1016/j.physa.2007.02.003
33 Landolt AU, UBVRI photometric standard stars in the magnitude range 11.5-16.0 around the celestial equator, AJ, 104, 340-371, 436-491 (1992). http://dx.doi.org/10.1086/116242   DOI
34 Landolt AU, UBVRI photometric standard stars around the sky at -$50^{\circ}$ declination, AJ, 133, 2502-2523 (2007). http://dx.doi.org/10.1086/518000   DOI
35 Landolt AU, UBVRI photometric standard stars around the celestial equator: updates and additions, AJ, 137, 4186-4269 (2009). http://dx.doi.org/10.1088/0004-6256/137/5/4186   DOI
36 Helminiak KG, Konacki M, Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue. II. Two spotted M < 1 Msun systems at different evolutionary stages, A&A, 526, A29 (2011). http://dx.doi.org/10.1051/0004-6361/200913336   DOI
37 Johnson HL, The absolute calibration of the Arizona photometry, CoLPL, 3, 73-77 (1965).
38 Helminiak KG, Konacki M, Zloczewski K, Ratajczak DE, Reichart DE, et al., Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue. III. Two new low-mass systems with rapidly evolving spots, A&A, 527, A14 (2011). http://dx.doi.org/10.1051/0004-6361/201015127   DOI
39 Hoffman JL, Nordsieck KH, Fox GK, Spectropolarimetric evidence for a bipolar flow in beta Lyrae, AJ, 115, 1576-1591 (1998). http://dx.doi.org/10.1086/300274   DOI
40 Howard RF, The growth and decay of sunspot groups, SoPh, 137, 51-65 (1992). http://dx.doi.org/10.1007/BF00146575
41 Johnson HL, Astronomical measurements in the infrared, ARA&A, 4, 193-206 (1966). http://dx.doi.org/10.1146/annurev.aa.04.090166.001205   DOI
42 Kallrath J, Milone EF, Eclipsing binary stars: modeling and analysis, 2nd ed. (Springer, New York, 2009), 238-241.
43 Hadrava P, FOTEL 4: user's guide, PAICz, 92, 1-14 (2004).
44 Fabregat J, Reig P, The absolute flux calibration of the UVBY photometric system, PASP, 108, 90-91 (1996). http://dx.doi.org/10.1086/133695   DOI
45 Gray RO, The absolute flux calibration of strömgren UVBY photometry, AJ, 116, 482-485 (1998). http://dx.doi.org/10.1086/300397   DOI
46 Hadrava P, Eclipsing binaries-light curve solutions, CoSka, 20, 23-25 (1990).
47 Hall DS, The active dynamo stars: RS CVn, BY Dra, FK Com, Algol, W UMa, and T Tau, MmSAI, 65, 73-82 (1994).
48 Hall DS, Henry GW, The law of starspot lifetimes, IAPPP, 55, 51-57 (1994).
49 Hathaway DH, The solar cycle, LRSP, 7, 1-65 (2010).
50 Hatzes AP, SPOT activity and the differential rotation on HD 106225 derived from Doppler tomography, A&A, 330, 541-548 (1998).