• 제목/요약/키워드: Analysis of potential profiles

검색결과 239건 처리시간 0.028초

반구형 실험모델을 이용한 대지표면 전위상승의 분석 (Analysis of the Ground Surface Potential Rise using a Hemisphere-Shaped Test Model)

  • 유재덕;조용승;이복희
    • 조명전기설비학회논문지
    • /
    • 제24권12호
    • /
    • pp.208-213
    • /
    • 2010
  • This paper deal with an analysis of the ground surface potential profiles using a hemispherical scaled-model. Because it is very difficult to draw valid conclusions concerning a general grounding problem from actual field data, scale model tests can be used to determine the ground surface potential profile around the grounding electrodes according to the configuration of grounding electrodes. In this work, a hemispherical vessel with a diameter of 1,100 [mm] was employed to simulate uniform soil and CDEGS program was employed to compare the measured and simulated results. As a result, the ground surface potential around the grounding electrode was significantly raised and the ground surface potential at the just upper point of ground electrode particularly was higher than other points. The ground surface potential of counterpoise was higher than other grounding electrodes such as mesh and grounding rods and the ground surface potential strongly depends on the frequency responses of grounding electrodes. Also the results measured with the small-sized model were in reasonably agreement with the data obtained from simulation.

Identification of Marker Genes Related to Cardiovascular Toxicity of Doxorubicin and Daunorubicin in Human Umbilical Vein Endothelial Cells (HUVECs)

  • Kim, Youn-Jung;Lee, Ha-Eun;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제3권4호
    • /
    • pp.246-253
    • /
    • 2007
  • Doxorubicin and daunorubicin are excellent chemotherapeutic agents utilized for several types of cancer but the irreversible cardiac damage is the major limitation for its use. The biochemical mechanisms of doxorubicin- and daunorubicin- induced cardiotoxicity remain unclear. There are many reports on toxicity of doxorubicin and doxorubicin in cardiomyocytes, but effects in cardiovascular system by these drugs are almost not reported. In this study, we investigated gene expression profiles in human umbilical vein endothelial cells (HUVECs) to better understand the causes of doxorubicin and doxorubicininduced cardiovascular toxicity and to identify differentially expressed genes (DEGs). Through the clustering analysis of gene expression profiles, we identified 124 up-regulated common genes and 298 down-regulated common genes changed by more than 1.5-fold by all two cardiac toxicants. HUVECs responded to doxorubicin and doxorubicin damage by increasing levels of apoptosis, oxidative stress, EGF and lipid metabolism related genes. By clustering analysis, we identified some genes as potential markers on apoptosis effects of doxorubicin and doxorubicin. Six genes of these, BBC3, APLP1, FAS, TP53INP, BIRC5 and DAPK were the most significantly affected by doxorubicin and doxorubicin. Thus, this study suggests that these differentially expressed genes may play an important role in the cardiovascular toxic effects and have significant potential as novel biomarkers to doxorubicin and doxorubicin exposure.

Metabolomics reveals potential biomarkers in the rumen fluid of dairy cows with different levels of milk production

  • Zhang, Hua;Tong, Jinjin;Zhang, Yonghong;Xiong, Benhai;Jiang, Linshu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권1호
    • /
    • pp.79-90
    • /
    • 2020
  • Objective: In the present study, an liquid chromatography/mass spectrometry (LC/MS) metabolomics approach was performed to investigate potential biomarkers of milk production in high- and low-milk-yield dairy cows and to establish correlations among rumen fluid metabolites. Methods: Sixteen lactating dairy cows with similar parity and days in milk were divided into high-yield (HY) and low-yield (LY) groups based on milk yield. On day 21, rumen fluid metabolites were quantified applying LC/MS. Results: The principal component analysis and orthogonal correction partial least squares discriminant analysis showed significantly separated clusters of the ruminal metabolite profiles of HY and LY groups. Compared with HY group, a total of 24 ruminal metabolites were significantly greater in LY group, such as 3-hydroxyanthranilic acid, carboxylic acids, carboxylic acid derivatives (L-isoleucine, L-valine, L-tyrosine, etc.), diazines (uracil, thymine, cytosine), and palmitic acid, while the concentrations of 30 metabolites were dramatically decreased in LY group compared to HY group, included gentisic acid, caprylic acid, and myristic acid. The metabolite enrichment analysis indicated that protein digestion and absorption, ABC transporters and unsaturated fatty acid biosynthesis were significantly different between the two groups. Correlation analysis between the ruminal microbiome and metabolites revealed that certain typical metabolites were exceedingly associated with definite ruminal bacteria; Firmicutes, Actinobacteria, and Synergistetes phyla were highly correlated with most metabolites. Conclusion: These findings revealed that the ruminal metabolite profiles were significantly different between HY and LY groups, and these results may provide novel insights to evaluate biomarkers for a better feed digestion and may reveal the potential mechanism underlying the difference in milk yield in dairy cows.

대진폭 조화 운동을 하는 잠수구에 의한 비선형 조파현상의 시간영역 해석 (Time-Domain Analysis of Nonlinear Wave-Making Phenomena by a Submerged Sphere Oscillating with Large Amplitude)

  • 김용직;하영록
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.382-385
    • /
    • 2006
  • A high-order spectral/boundary-element method is newly adapted as an efficient numerical tool. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved fly using the high-order spectral method and body potential is solved fly using the high-order boundary element method. Through the combination of these two methods, the wave-making problems fly a submerged sphere moving with the large amplitude oscillation are solved in time-domain. With the example calculations, nonlinear effects on free-surface profiles and hydrodynamic forces are shown and discussed.

  • PDF

Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals

  • Yurim Jang;Ji Hyun Moon;Byung Kwan Jeon;Ho Jin Park;Hong Jin Lee;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1351-1360
    • /
    • 2023
  • Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.

반구형 축소모델을 이용한 접지전극 주변의 전위상승 분석 (Analysis of the Potential Rises near Grounding Electrodes using Semisplere type scale Model)

  • 이복희;백영환;이봉;김기복
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.259-262
    • /
    • 2008
  • This paper describes the ground surface potential profiles near the object to be grounded. The hemisphere water tank was used to simulate the. scale model. As a result, the ground surface potential near the ground electrode was considerably raised. In particular the ground surface potential at the just upper part of ground rod was higher than other part. The ground surface potential was lowered with increasing the buried depth of ground rod.

  • PDF

사례연구를 통한 도로 절개면 설계 문제점 분석과 대책안 제시 (Analysis of Problems in Road Cut-Slope Design Based on Practical Example)

  • 이기하;백영식;구호본;박혁진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.167-174
    • /
    • 2000
  • Profiles of discontinuities through scanline method were investigated for the analysis of rock slope stability. Lower hemispheric projection method was used to evaluate the geometric stability and failure potential of these discontinuities. Also, safety factor was evaluated for the discontinuities of failure potential using by limit equilibrium analysis. Then, displacements of rock block due to the discontinuities were displayed by using the program UDEC(Universal Distinct Element Code) which applied the Distinct Element Method. When we determine the cut-slope in design, the characteristics of discontinuities is not represented only by strength parameters of intact rock. Therefore it is more reasonable method in assuring stability that first, construction would be preceded by the cut-slope of preliminary design, and then, cut-slope would be redetermined by elaborate site investigation in processing construction.

  • PDF

Comprehensive analysis of miRNAs, lncRNAs and mRNAs profiles in backfat tissue between Daweizi and Yorkshire pigs

  • Chen Chen;Yitong Chang;Yuan Deng;Qingming Cui;Yingying Liu;Huali Li;Huibo Ren;Ji Zhu;Qi Liu;Yinglin Peng
    • Animal Bioscience
    • /
    • 제36권3호
    • /
    • pp.404-416
    • /
    • 2023
  • Objective: Daweizi (DWZ) is a famous indigenous pig breed in China and characterized by tender meat and high fat percentage. However, the expression profiles and functions of transcripts in DWZ pigs is still in infancy. The object of this study was to depict the transcript profiles in DWZ pigs and screen the potential pathway influence adipogenesis and fat deposition, Methods: Histological analysis of backfat tissue was firstly performed between DWZ and lean-type Yorkshire pigs, and then RNA sequencing technology was utilized to explore miRNAs, lncRNAs and mRNAs profiles in backfat tissue. 18 differentially expressed (DE) transcripts were randomly selected for quantitative real-time polymerase chain reaction (QPCR) to validate the reliability of the sequencing results. Finally, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis were conducted to investigate the potential pathways influence adipocyte differentiation, adipogenesis and lipid metabolism, and a schematic model was further proposed. Results: A total of 1,625 differentially expressed transcripts were identified in DWZ pigs, including 27 upregulated and 45 downregulated miRNAs, 64 upregulated and 119 down-regulated lncRNA, 814 upregulated and 556 downregulated mRNAs. QPCR analysis exhibited strong consistency with the sequencing data. GO and KEGG analysis elucidated that the differentially expressed transcripts were mainly associated with cell growth and death, signal transduction, peroxisome proliferator-activated receptors (PPAR), AMP-activated protein kinase (AMPK), PI3K-Akt, adipocytokine and foxo signaling pathways, all of which are strongly involved in cell development, lipid metabolism and adipogenesis. Further analysis indicated that the BGIR9823_87926/miR-194a-5p/AQP7 network may be effective in the process of adipocyte differentiation or adipogenesis. Conclusion: Our study provides comprehensive insights into the regulatory network of backfat deposition and lipid metabolism in pigs from the point of view of miRNAs, lncRNAs and mRNAs.

Obesity-Associated Metabolic Signatures Correlate to Clinical and Inflammatory Profiles of Asthma: A Pilot Study

  • Liu, Ying;Zheng, Jing;Zhang, Hong Ping;Zhang, Xin;Wang, Lei;Wood, Lisa;Wang, Gang
    • Allergy, Asthma & Immunology Research
    • /
    • 제10권6호
    • /
    • pp.628-647
    • /
    • 2018
  • Purpose: Obesity is associated with metabolic dysregulation, but the underlying metabolic signatures involving clinical and inflammatory profiles of obese asthma are largely unexplored. We aimed at identifying the metabolic signatures of obese asthma. Methods: Eligible subjects with obese (n = 11) and lean (n = 22) asthma underwent body composition and clinical assessment, sputum induction, and blood sampling. Sputum supernatant was assessed for interleukin $(IL)-1{\beta}$, -4, -5, -6, -13, and tumor necrosis factor $(TNF)-{\alpha}$, and serum was detected for leptin, adiponectin and C-reactive protein. Untargeted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolic profiles in sputum, serum and peripheral blood monocular cells (PBMCs) were analyzed by orthogonal projections to latent structures-discriminate analysis (OPLS-DA) and pathway topology enrichment analysis. The differential metabolites were further validated by correlation analysis with body composition, and clinical and inflammatory profiles. Results: Body composition, asthma control, and the levels of $IL-1{\beta}$, -4, -13, leptin and adiponectin in obese asthmatics were significantly different from those in lean asthmatics. OPLS-DA analysis revealed 28 differential metabolites that distinguished obese from lean asthmatic subjects. The validation analysis identified 18 potential metabolic signatures (11 in sputum, 4 in serum and 2 in PBMCs) of obese asthmatics. Pathway topology enrichment analysis revealed that cyanoamino acid metabolism, caffeine metabolism, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, pentose phosphate pathway in sputum, and glyoxylate and dicarboxylate metabolism, glycerolipid metabolism and pentose phosphate pathway in serum are suggested to be significant pathways related to obese asthma. Conclusions: GC-TOF-MS-based metabolomics indicates obese asthma is characterized by a metabolic profile different from lean asthma. The potential metabolic signatures indicated novel immune-metabolic mechanisms in obese asthma with providing more phenotypic and therapeutic implications, which needs further replication and validation.

Fatty acid analysis as a tool to infer the diet in Illinois river otters (Lontra canadensis)

  • Satterthwaite-Phillips, Damian;Novakofski, Jan;Mateus-Pinilla, Nohra
    • Journal of Animal Science and Technology
    • /
    • 제56권5호
    • /
    • pp.16.1-16.9
    • /
    • 2014
  • Fatty acids (FA) have recently been used in several studies to infer the diet in a number of species. While these studies have been largely successful, most have dealt with predators that have a fairly specialized diet. In this paper, we used FA analysis as a tool to infer the diet of the nearctic river otter (Lontra canadensis). The river otter is an opportunistic predator known to subsist on a wide variety of prey including, fishes, crayfish, molluscs, reptiles and amphibians, among others. We analyzed the principle components of 60 FA from otters and 25 potential prey species in Illinois, USA. Prey species came from 4 major taxonomic divisions: fishes, crayfish, molluscs and amphibians. Within each division, most, but not all, species had significantly different profiles. Using quantitative FA signature analysis, our results suggest that, by mass, fish species are the most significant component of Illinois River otters' diet ($37.7{\pm}1.0%$). Molluscs ranked second ($32.0{\pm}0.8%$), followed by amphibians ($27.3{\pm}4.3%$), and finally, crayfish ($3.0{\pm}0.6%$). Our analysis indicates that molluscs make up a larger portion of the otter diet than previously reported. Throughout much of the Midwest there have been numerous otter reintroduction efforts, many of which appear to be successful. In regions where mollusc species are endangered, these data are essential for management agencies to better understand the potential impact of otters on these species. Our analysis further suggests that quantitative FA signature analysis can be used to infer diet even when prey species are diverse, to the extent that their FA profiles differ. Better understanding of the otter's metabolism of FA would improve inferences of diet from FA analysis.