• 제목/요약/키워드: Analysis of ginsenoside

검색결과 301건 처리시간 0.026초

인삼사포닌의 정신약리 (Further Evidence in Support of Psychotropic Action on Red Ginseng)

  • Hiroyuki Yoshimura;Kimura, Naoto
    • Journal of Ginseng Research
    • /
    • 제14권2호
    • /
    • pp.171-177
    • /
    • 1990
  • Using an ethopharmacological technique, we demonstrated that saponin fraction from red ginseng root possessed a potent psychotropic actions on either intermale or maternal aggression models. A series of experiments clearly indicated that one of psychoactive ingredient is ginsenoside Rbl. Although a drug-induced debilitation of motor performance remains a possible cause of the antiaggressive affect of the drug. ginsenoside Rbl did not alter the locomotor activity of the mice during agonistic confrontations. Thus. one can eliminate the possibility that the psychotropic effect of ginsenoside Rbl might be concealed by a drug-induced impairment of motor performance. More recently, we developed a nevi model for copulatory disorder and introduced into the behavioral analysis of drug action. Male mice which has been housed individually from weaning for 5 weeks failed to manifest copulatory behavior when they encountered with the sexually receptive females. Daily administration of crude ginseng saponin during isolation housing period prevented the development of copulatory disorder, whereas both ginsenoside Rbl and Rgl were ineffective. A further experiment may be needed to explore active ingredient of ginseng saponins.

  • PDF

Epidermis Proliferative Effect of the Panax ginseng Ginsenoside $Rb_2$

  • Choi, Seong-Won
    • Archives of Pharmacal Research
    • /
    • 제25권1호
    • /
    • pp.71-76
    • /
    • 2002
  • Ginseng has been used as a traditional medicine with various therapeutic effects. However, it is still unknown which component of this plant is effective at promoting wound healing. Recently, ginsenoside $Rb_2$ has been reported to improve wound healing. In this study, to investigate the reported wound healing effect of the ginsenoside $Rb_2$, cell morphology and protein factors involved in epidermal formation were evaluated by immunshemical and immunoblotting analysis. $Rb_2$ stimulated epidermal cell proliferation, and the cell showed a 1.5-fold increase in thymidine uptake compared to the control (p<0.05, n=3). Futheremore $Rb_2$, was found to stimulate epidermis formation in a dose-dependent manner in raft culture, and to dose dependently enhance the expressions of protein factors related to cell proliferation, namely, epidermal growth factor and its receptor, fibronectin and its receptor, keratin 5/14, and collagenase 1 (p<0.05, n=3~9). It is believed that ginsenoside $Rb_2$, enhances epidermal cell proliferation by upregulating the expressions of these proliferation-related factors.

Prebiotics enhance the biotransformation and bioavailability of ginsenosides in rats by modulating gut microbiota

  • Zhang, Xiaoyan;Chen, Sha;Duan, Feipeng;Liu, An;Li, Shaojing;Zhong, Wen;Sheng, Wei;Chen, Jun;Xu, Jiang;Xiao, Shuiming
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.334-343
    • /
    • 2021
  • Background: Gut microbiota mainly function in the biotransformation of primary ginsenosides into bioactive metabolites. Herein, we investigated the effects of three prebiotic fibers by targeting gut microbiota on the metabolism of ginsenoside Rb1 in vivo. Methods: Sprague Dawley rats were administered with ginsenoside Rb1 after a two-week prebiotic intervention of fructooligosaccharide, galactooligosaccharide, and fibersol-2, respectively. Pharmacokinetic analysis of ginsenoside Rb1 and its metabolites was performed, whilst the microbial composition and metabolic function of gut microbiota were examined by 16S rRNA gene amplicon and metagenomic shotgun sequencing. Results: The results showed that peak plasma concentration and area under concentration time curve of ginsenoside Rb1 and its intermediate metabolites, ginsenoside Rd, F2, and compound K (CK), in the prebiotic intervention groups were increased at various degrees compared with those in the control group. Gut microbiota dramatically responded to the prebiotic treatment at both taxonomical and functional levels. The abundance of Prevotella, which possesses potential function to hydrolyze ginsenoside Rb1 into CK, was significantly elevated in the three prebiotic groups (P < 0.05). The gut metagenomic analysis also revealed the functional gene enrichment for terpenoid/polyketide metabolism, glycolysis, gluconeogenesis, propanoate metabolism, etc. Conclusion: These findings imply that prebiotics may selectively promote the proliferation of certain bacterial stains with glycoside hydrolysis capacity, thereby, subsequently improving the biotransformation and bioavailability of primary ginsenosides in vivo.

Identification of mountain-cultivated ginseng and cultivated ginseng using UPLC/oa-TOF MSE with a multivariate statistical sample-profiling strategy

  • Xu, Xin-fang;Cheng, Xian-long;Lin, Qing-hua;Li, Sha-sha;Jia, Zhe;Han, Ting;Lin, Rui-chao;Wang, Dan;Wei, Feng;Li, Xiang-ri
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.344-350
    • /
    • 2016
  • Background: Mountain-cultivated ginseng (MCG) and cultivated ginseng (CG) both belong to Panax ginseng and have similar ingredients. However, their pharmacological activities are different due to their significantly different growth environments. Methods: An ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS)-based approach was developed to distinguish MCG and CG. Multivariate statistical methods, such as principal component analysis and supervised orthogonal partial-least-squares discrimination analysis were used to select the influential components. Results: Under optimized UPLC-QTOF-MS/MS conditions, 40 ginsenosides in both MCG and CG were unambiguously identified and tentatively assigned. The results showed that the characteristic components of CG and MCG included ginsenoside Ra3/isomer, gypenoside XVII, quinquenoside R1, ginsenoside Ra7, notoginsenoside Fe, ginsenoside Ra2, ginsenoside Rs6/Rs7, malonyl ginsenoside Rc, malonyl ginsenoside Rb1, malonyl ginsenoside Rb2, palmitoleic acid, and ethyl linoleate. The malony ginsenosides are abundant in CG, but higher levels of the minor ginsenosides were detected in MCG. Conclusion: This is the first time that the differences between CG and MCG have been observed systematically at the chemical level. Our results suggested that using the identified characteristic components as chemical markers to identify different ginseng products is effective and viable.

Quantitative Analysis of Dammarane-type Ginsenosides in Different Ginseng Products

  • Lee, Dong Gu;Quilantang, Norman G.;Lee, Ju Sung;Geraldino, Paul John L.;Kim, Hyun Young;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • 제24권4호
    • /
    • pp.229-234
    • /
    • 2018
  • Ginseng products available in different forms and preparations are reported to have varied bioactivities and chemical compositions. In our previous study, four new dammarane-type ginsenosides were isolated from Panax ginseng, which are ginsenoside Rg18 (1), 6-acetyl ginsenoside Rg3 (2), ginsenoside Rs11 (3), and ginsenoside Re7 (4). Accordingly, the goal of this study was to determine the distribution and content of these newly characterized ginsenosides in different ginseng products. The content of compounds 1 - 4 in different ginseng products was determined via HPLC-UV. The samples included ginseng roots from different ginseng species, roots harvested from different localities in Korea, and samples harvested at different cultivation ages and processed under different manufacturing methods. The four ginsenosides were present at varying concentrations in the different ginseng samples examined. The variations in their content could be attributed to species variation, and differences in cultivation conditions and manufacturing methods. The total concentration of compounds 1 - 4 were highest in ginseng obtained from Geumsan ($185{\mu}g/g$), white-6 yr ginseng ($150{\mu}g/g$), and P. quinquefolius ($186{\mu}g/g$). The results of this study provide a basis for the optimization of cultivation conditions and manufacturing methods to maximize the yield of the four new ginsenosides in ginseng.

Ginsenoside-Rp1-induced apolipoprotein A-1 expression in the LoVo human colon cancer cell line

  • Kim, Mi-Yeon;Yoo, Byong Chul;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제38권4호
    • /
    • pp.251-255
    • /
    • 2014
  • Background: Ginsenoside Rp1 (G-Rp1) is a novel ginsenoside derived from ginsenoside Rk1. This compound was reported to have anticancer, anti-platelet, and anti-inflammatory activities. In this study, we examined the molecular target of the antiproliferative and proapoptotic activities of G-Rp1. Methods: To examine the effects of G-Rp1, cell proliferation assays, propidium iodine staining, proteomic analysis by two-dimensional gel electrophoresis, immunoblotting analysis, and a knockdown strategy were used. Results: G-Rp1 dose-dependently suppressed the proliferation of colorectal cancer LoVo cells and increased their apoptosis. G-Rp1 markedly upregulated the protein level of apolipoprotein (Apo)-A1 in LoVo, SNU-407, DLD-1, SNU-638, AGS, KPL-4, and SK-BR-3 cells. The knockdown of Apo-A1 by its small-interfering RNA increased the levels of cleaved poly(ADP-ribose) polymerase and p53 and diminished the proliferation of LoVo cells. Conclusion: These results suggest that G-Rp1 may act as an anticancer agent by strongly inhibiting cell proliferation and enhancing apoptosis through upregulation of Apo-A1.

Ginsenoside compound K reduces ischemia/reperfusion-induced neuronal apoptosis by inhibiting PTP1B-mediated IRS1 tyrosine dephosphorylation

  • Jing, Fu;Liang, Yu;Qian, Yu;Nengwei, Yu;Fei, Xu;Suping, Li
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.274-282
    • /
    • 2023
  • Background: Ginsenoside compound K (CK) stimulated activation of the PI3K-Akt signaling is one of the major mechanisms in promoting cell survival after stroke. However, the underlying mediators remain poorly understood. This study aimed to explore the docking protein of ginsenoside CK mediating the neuroprotective effects. Materials and methods: Molecular docking, surface plasmon resonance, and cellular thermal shift assay were performed to explore ginsenoside CK interacting proteins. Neuroscreen-1 cells and middle cerebral artery occlusion (MCAO) model in rats were utilized as in-vitro and in-vivo models. Results: Ginsenoside CK interacted with recombinant human PTP1B protein and impaired its tyrosine phosphatase activity. Pathway and process enrichment analysis confirmed the involvement of PTP1B and its interacting proteins in PI3K-Akt signaling pathway. PTP1B overexpression reduced the tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) after oxygen-glucose deprivation/reoxygenation (OGD/R) in neuroscreen-1 cells. These regulations were confirmed in the ipsilateral ischemic hemisphere of the rat brains after MCAO/R. Ginsenoside CK treatment reversed these alterations and attenuated neuronal apoptosis. Conclusion: Ginsenoside CK binds to PTP1B with a high affinity and inhibits PTP1B-mediated IRS1 tyrosine dephosphorylation. This novel mechanism helps explain the role of ginsenoside CK in activating the neuronal protective PI3K-Akt signaling pathway after ischemia-reperfusion injury.

인삼유래 Ginsenoside Rg3에 의한 항-주름 효과 (Anti-wrinkle Effect by Ginsenoside Rg3 Derived from Ginseng)

  • 김성우;정지헌;조병기
    • 대한화장품학회지
    • /
    • 제30권2호
    • /
    • pp.221-225
    • /
    • 2004
  • 인삼(Panax ginseng C. A Meyer)의 뿌리는 전통적인 항-노화 및 항-주름제로 동양에서 사용되어 왔다. 그러나 인삼의 어떤 성분이 주름 형성을 억제하는데 효과적인지는 아직 밝혀지지 않았다. 최근 인삼의 주요 활성 성분으로 생각되는 ginsenosides가 20가지 이상 분리되었다. 이들 중 본 연구원들은 인삼에 의한 항-주름의 작용기작을 밝히기 위해 세포간질(extracellular matrix, ECM) 물질대사에 있어 ginsenoside Rg3의 진피에서의 효과를 시험하였다. 본 연구에서, ginsenoside Rg3의 항-주름 효과를 연구하기 위해 진피의 세포간질 구성 성분과 성장 인자를 ELISA (enzyme-1in14ed immunosorbent assay) 측정법으로 평가하였다. Ginsenoside Rg3은 human dermal fibroblasts 배양에서 type I procollagen과 fibronectin(FN) 생합성을 농도 증가에 비례하여 촉진시키고(p < 0.05, n=3), 농도에 비례하여 TGF-$\beta$1 수준을 증가 (p < 0.05, n=3) 시키는 것으로 밝혀졌다. RT-PCR 분석에서 AP-1 전사 인자(transcription factor)의 일부인 c-Jun의 mRNA 수준이 human dermal fibroblasts에서 ginsenoside Rg3에 의해 감소되었다. 이들 결과들은 ginsenoside Rg3이 fibroblasts에서 TGF-$\beta$1과 AP-1의 발현을 변화시킴으로써 type I collagen과 FN합성을 촉진시킴을 보여준다.

Further Evidence in Support of Psychotropic Action on Red Ginseng

  • Yoshimura, Hiroyuki;Kimura, Naoto
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1990년도 Proceedings of International Symposium on Korean Ginseng, 1990, Seoul, Korea
    • /
    • pp.29-35
    • /
    • 1990
  • Using an ethopharmacological technique, we demonstrated that saponin fraction from red ginseng root possessed a potent psychotropic actions on either intermale or maternal aggression models. A series of experiments clearly indicated that one of psychoactive ingredient is ginsenoside Rbl. Although a drug-induced debilitation of motor performance remains a possible cause of the antiaggressive effect of the drug, ginsenoside Rb 1 did not alter the locomotor activity of the mice during agonistic confrontations. Thus, one can eliminate the possibility that the psychoactive effect of ginsenoside Rbl might be concealed by a drugindulced impairment of motor performance. More recently, we developed a new model for copulatory disorder and introduced into the behavioral analysis of drug action. Male mice which has been housed individually from weaning for 5 weeks failed to manifest copulatory behavior when they encountered with the sexually-receptive females. Daily administration of crude ginseng saponin during isolation housing period prevented the development of copulatory disorder, whereas both ginsenoside Rbl and Rgl were ineffective. A further experiment may be needed to explore active ingredient of ginseng saponins. Keywords Panax ginseng, Korean red ginseng, psychotropic action, saponin, ginsenoside Rb1

  • PDF

Characterization of Paenibacillus sp. MBT213 Isolated from Raw Milk and Its Ability to Convert Ginsenoside Rb1 into Ginsenoside Rd from Panax ginseng

  • Renchinkhand, Gereltuya;Cho, Soo Hyun;Urgamal, Magsar;Park, Young W;Nam, Joong Hyeon;Bae, Hyung Churl;Song, Gyu Yong;Nam, Myoung Soo
    • 한국축산식품학회지
    • /
    • 제37권5호
    • /
    • pp.735-742
    • /
    • 2017
  • This study was conducted to isolate and characterize Paenibacillus sp. MBT213 possessing ${\beta}$-glucosidase activity from raw milk, and examine the enzymatic capacity on the hydrolysis of a major ginsenoside ($Rb_1$). Strain MBT213 was found to have a high hydrolytic ability on ginsenoside $Rb_1$ by Esculin Iron Agar test. 16S rDNA analysis revealed that MBT213 was Paenibacillu sp. Crude enzyme of MBT213 strain exhibited high conversion capacity on ginsenoside $Rb_1$ into ginsenoside Rd proven by TLC and HPLC analyses. The API ZYM kit confirmed that Paenibacillu sp. MBT213 exerted higher ${\beta}$-glucosidase and ${\beta}$-galactosidase activity than other strains. Optimum pH and temperature for crude enzyme were found at 7.0 and $35^{\circ}C$ in hydrolysis of ginsenoside $Rb_1$. After 10 d of optimal reaction conditions for the crude enzyme, ginsenoside $Rb_1$ fully converted to ginsenoside Rd. Ginseng roots (20%) were fermented for 14 d, and analyzed by HPLC showed that amount of ginsenoside $Rb_1$ significantly decreased, while that of ginsenoside Rd was significantly increased. The study confirmed that the ${\beta}$-glucosidase produced by Paenibacillus sp. MBT213 can hydrolyze the major ginsenoside $Rb_1$ and convert to Rd during fermentation of the ginseng. The ${\beta}$-glucosidase activity of this novel Paenibacillus sp. MBT213 strain may be utilized in development of variety of health foods, dairy foods and pharmaceutical products.