• Title/Summary/Keyword: Analysis of ginsenoside

Search Result 301, Processing Time 0.023 seconds

Ginsenoside Rg3 Alleviates Lipopolysaccharide-Induced Learning and Memory Impairments by Anti-Inflammatory Activity in Rats

  • Lee, Bombi;Sur, Bongjun;Park, Jinhee;Kim, Sung-Hun;Kwon, Sunoh;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.381-390
    • /
    • 2013
  • The purpose of this study was to examine whether ginsenoside Rg3 (GRg3) could improve learning and memory impairments and inflammatory reactions induced by injecting lipopolysaccharide (LPS) into the brains of rats. The effects of GRg3 on proinflammatory mediators in the hippocampus and the underlying mechanisms of these effects were also investigated. Injection of LPS into the lateral ventricle caused chronic inflammation and produced deficits in learning in a memory-impairment animal model. Daily administration of GRg3 (10, 20, and 50 mg/kg, i.p.) for 21 consecutive days markedly improved the LPS-induced learning and memory disabilities demonstrated on the step-through passive avoidance test and Morris water maze test. GRg3 administration significantly decreased expression of pro-inflammatory mediators such as tumor necrosis factor-${\alpha}$, interleukin-1${\beta}$, and cyclooxygenase-2 in the hippocampus, as assessed by reverse transcription-polymerase chain reaction analysis and immunohistochemistry. Together, these findings suggest that GRg3 significantly attenuated LPS-induced cognitive impairment by inhibiting the expression of pro-inflammatory mediators in the rat brain. These results suggest that GRg3 may be effective for preventing or slowing the development of neurological disorders, including Alzheimer's disease, by improving cognitive and memory functions due to its anti-inflammatory activity in the brain.

Comparison of Preparation Methods for the Quantification of Ginsenosides in Raw Korean Ginseng

  • Hong, Hee-Do;Sim, Eun-Mi;Kim, Kyung-Tack;Rho, Jeong-Hae;Rhee, Young-Kyung;Cho, Chang-Won
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.565-569
    • /
    • 2009
  • This study was conducted to evaluate the effects of different preparation methods on the recovery and quantification of ginsenosides in raw Korean ginseng (Panax ginseng C.A. Meyer). Eight major ginsenosides ($Rb_1$, $Rb_2$, $Rb_3$, Rc, Rd, Re, Rf, and $Rg_1$) were analyzed by high performance liquid chromatography (HPLC), after which the recovery and repeatability of the extraction of those ginsenosides using 3 different preparation methods were compared [A. direct extraction (DE) method, hot MeOH extraction/evaporation/direct dissolution; B. solid phase extraction (SPE) method, hot MeOH extraction/evaporation/dissolution/$C_{18}$ cartridge adsorption/MeOH elution; C. liquid-liquid extraction (LLE) method, hot MeOH extraction/evaporation/dissolution/n-BuOH fractionation]. Use of the DE method resulted in a significantly higher recovery of total ginsenosides than other methods and a relatively clear peak resolution. Use of the SPE and LLE methods resulted in clearer peak resolution, but lower ginsenoside recovery than the DE method. The LLE method showed the lowest ginsenoside recovery and repeatability among the 3 methods. Given that the DE method employed only extraction, evaporation, and a dissolution step (avoiding complicate and time consuming purification), this technique may be an effective method for the preparation and quantification of ginsenosides from raw Korean ginseng.

In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng

  • In, Gyo;Ahn, Nam-Geun;Bae, Bong-Seok;Lee, Myoung-Woo;Park, Hee-Won;Jang, Kyoung Hwa;Cho, Byung-Goo;Han, Chang Kyun;Park, Chae Kyu;Kwak, Yi-Seong
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.361-369
    • /
    • 2017
  • Background: The chemical constituents of Panax ginseng are changed by processing methods such as steaming or sun drying. In the present study, the chemical change of Panax ginseng induced by steaming was monitored in situ. Methods: Samples were separated from the same ginseng root by incision during the steaming process, for in situ monitoring. Sampling was sequentially performed in three stages; FG (fresh ginseng) ${\rightarrow}$ SG (steamed ginseng) ${\rightarrow}$ RG (red ginseng) and 60 samples were prepared and freeze dried. The samples were then analyzed to determine 43 constituents among three stages of P. ginseng. Results: The results showed that six malonyl-ginsenoside (Rg1, Rb1, Rb3, Rc, Rd, Rb2) and 15 amino acids were decreased in concentration during the steaming process. In contrast, ginsenoside-Rh1, 20(S)-Rg2, 20(S, R)-Rg3 and Maillard reaction product such as AF (arginine-fructose), AFG (arginine-fructose-glucose), and maltol were newly generated or their concentrations were increased. Conclusion: This study elucidates the dynamic changes in the chemical components of P. ginseng when the steaming process was induced. These results are thought to be helpful for quality control and standardization of herbal drugs using P. ginseng and they also provide a scientific basis for pharmacological research of processed ginseng (Red ginseng).

Sensory Evaluation and Bioavailability of Red Ginseng Extract(Rg1, Rb1) by Complexation with ${\gamma}$-Cyclodextrin (${\gamma}$-cyclodextrin으로 포접한 홍삼추출물의 관능평가 및 Rg1, Rb1의 생체이용율)

  • Lee, Seung-Hyun;Park, Ji-Ho;Cho, Nam-Suk;Yu, Heui-Jong;You, Sung-Kyun;Cho, Cheong-Weon;Kim, Dong-Chool;Kim, Young-Heui;Kim, Ki-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.106-110
    • /
    • 2009
  • In order to reduce the bitter taste and improve the bioavailability of red ginseng extract(RGE), inclusion complexes (RGE-CD) of the extract with ${\alpha}-,\;{\beta}-,\;{\gamma}$-cyclodextrin were prepared and studied for their sensory quality and bioavailability compared to RGE. By complexation, the bitter taste-reducing efficacies of ${\alpha}$-CD and ${\beta}$-CD were much lower than that of ${\gamma}$-CD. In comparative sensory analysis for the bitter taste, RGE-${\gamma}$-CD10, prepared using 10%(w/w) of ${\gamma}$-CD, showed a score of 1.93(decreased by about 78%) compared to RGE as the control. In addition, in sensory analysis for flavor, RGE-${\gamma}$-CD10showed a score of 5.60. Upon increasing the amount of ${\gamma}$-CD to 15%(w/w) and 20%(w/w), respectively, the bitter taste of RGE-${\gamma}$-CD was removed and the flavor of RGE disappeared(scores of 2.67 and 1.67, respectively). Therefore RGE-${\gamma}$-CD10 was chosen as an optimum. The same dosages of RGE and RGE-${\gamma}$-CD10 were orally administered to SD(Sprague-Dawley) rats on a saponin basis, and the plasma concentrations of ginsenoside Rg1 and Rb1 were measured over time to estimate the average AUC(area under the plasma concentration versus time curve) of the ginsenosides. After the oral administration, there were no significant differences in the AUC values of the RGE and RGE-${\gamma}$-CD 10 groups for ginsenoside Rg1. However, AUC values for ginsenoside Rb1 were $25.8{\mu}g{\cdot}hr/mL$ in the RGE group and $81.5{\mu}g{\cdot}hr/mL$ in the RGE-${\gamma}$-CD 10 group, respectively. Therefore, the bioavailability of ginsenoside Rb1 in the RGE-${\gamma}$-CD 10 group was significantly higher by up to 315% compared with that in the RGE group(p = 0.0029). These results show that the bitter taste of RGE can be simultaneously removed by the complexation of RGE and ${\gamma}$-CD(RGE-${\gamma}$-CD) along with increased bioavailability.

Evaluation of storage period of fresh ginseng for quality improvement of dried and red processed varieties

  • Zhang, Na;Huang, Xin;Guo, Yun-Long;Yue, Hao;Chen, Chang-Bao;Liu, Shu-Ying
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.290-295
    • /
    • 2022
  • Background: Dried and red ginseng are well-known types of processed ginseng and are widely used as healthy food. The dried and red ginseng quality may vary with the storage period of raw ginseng. Therefore, herein, the effect of the storage period of fresh ginseng on processed ginseng quality was evaluated through multicomponent quantification with statistical analysis. Methods: A method based on ultrahigh performance liquid chromatography coupled to triple quadrupole mass spectrometry in multiple-reaction monitoring mode (UPLC-MRM-MS) was developed for quantitation of ginsenosides and oligosaccharides in dried and red ginseng. Principal component analysis and partial least squares discriminant analysis were conducted to evaluate the dynamic distributions of ginsenosides and oligosaccharides after different storage periods. Results: Eighteen PPD, PPT and OLE ginsenosides and nine reducing and nonreducing oligosaccharides were identified and quantified. With storage period extension, the ginsenoside content in the processed ginseng increased slightly in the first 2 weeks and decreased gradually in the following 9 weeks. The content of reducing oligosaccharides decreased continuously as storage time extending, while that of the nonreducing oligosaccharides increased. Chemical conversions occurred during storage, based on which potential chemical markers for the storage period evaluation of fresh ginseng were screened. Conclusion: According to ginsenoside and oligosaccharide distributions, it was found that the optimal storage period was 2 weeks and that the storage period of fresh ginseng should not exceed 4 weeks at 0 ℃. This study provides deep insights into the quality control of processed ginseng and comprehensive factors for storage of raw ginseng.

Qualitative and Quantitative Analysis of Thirteen Marker Components in Traditional Korean Formula, Samryeongbaekchul-san using an Ultra-Performance Liquid Chromatography Equipped with Electrospray Ionization Tandem Mass Spectrometry

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Natural Product Sciences
    • /
    • v.22 no.2
    • /
    • pp.93-101
    • /
    • 2016
  • For efficient quality control of the Samryeongbaekchul-san decoction, a powerful and accurate an ultra-performance liquid chromatography (UPLC) coupled with electrospray ionization (ESI) tandem mass spectrometry (MS) method was developed for quantitative analysis of the thirteen constituents: allantoin (1), spinosin (2), liquiritin (3), ginsenoside Rg1 (4), liquiritigenin (5), platycodin D2 (6), platycodin D (7), ginsenoside Rb1 (8), glycyrrhizin (9), 6-gingerol (10), atractylenolide III (11), atractylenolide II (12), and atractylenolide I (13). Separation of the compounds 1 - 13 was performed on a UPLC BEH $C_{18}$ column ($2.1{\times}100mm$, $1.7{\mu}m$) at a column temperature of $40^{\circ}C$ with a gradient solvent system of 0.1% (v/v) formic acid aqueous-acetonitrile. The flow rate and injection volume were 0.3 mL/min and $2.0{\mu}L$. Calibration curves of all compounds were showed good linearity with values of the correlation coefficient ${\geq}0.9920$ within the test ranges. The values of limits of detection and quantification for all analytes were 0.04 - 4.53 ng/mL and 0.13 - 13.60 ng/mL. The result of an experiment, compounds 2, 6, 12, and 13 were not detected while compounds 1, 3 - 5, and 7 - 11 were detected with 1,570.42, 5,239.85, 299.35, 318.88, 562.27, 340.87, 12,253.69, 73.80, and $115.01{\mu}g/g$, respectively.

A Study on the Enhancement of Barrier Function and Improvement of Lipid Packing Structure in a 3D Skin Model by Ginsenoside Rg3 (Ginsenoside Rg3 에 의한 3D 피부 모델의 장벽 기능 강화 및 지질 패킹 구조 개선에 관한 연구)

  • Sunyoung Kim;Seol-Hoon Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.4
    • /
    • pp.323-330
    • /
    • 2023
  • The skin's barrier structure is formed through the differentiation process of epidermal keratinocytes. It consists of corneocytes that are composed of keratin proteins and lipids that fill the spaces between them. During this process, the lipids such as phospholipid that made up the membrane of the basal layer cells of the epidermis are decomposed and replaced with newly synthesized components like ceramide. In this study, the effect of ginsenoside Rg3 components on the packing of the intercellular lipid structure of the skin barrier and the barrier function was confirmed. To confirm this, Rg3 components were treated during the differentiation process of 3D epidermal cells. The FT-IR and TEWL analysis on 3D epidermis showed an enhancement in the orthorhombic lipid packing and an improvement in barrier function. Additionally, in HaCaT cells, an increase in the expression of EVOL1 and EVOL4, which synthesize long-chain lipids, was detected, along with a decrease in CERS6, which synthesizes short-chain ceramide, and an increase in ACER6, which decomposes ceramide using phytosphingosine. This suggests the possibility that Rg3 affects lipid synthesis during the epidermal differentiation process, resulting in changes in barrier function.

Comparative Studies of Panax ginseng and Panax quinquefolium on TCDD-induced Toxicity in Rats

  • Wee Jae Joon;Choi Seung Hoon;Park Kyeong Mee;Kyung Jong Su;Kang Dae Young;Song Tae Won
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.227-237
    • /
    • 2002
  • One prominent characteristic of2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) toxicity in rats is a reduction of body weight accompanied by an altered serum lipid profile such as hyperlipidemia. A single administration of TCDD (50 ug/kg) resulted in a decrease of body weight and increase of serum cholesterol in rats. TCDD-induced weight loss and serum cholesterol elevation was reduced in rats administered with water extract (100 mg/kg) or saponin fraction (40 mg/kg) of Panax ginseng C.A.Meyer. In contrast, the administration of Panax quinquefolium did not inhibit the TCDD-induced weight loss and serum cholesterol elevation. Histological examinations of liver and testis revealed the administration of saponin fraction of Panax ginseng attenuated the TCDD-induced hispathologicallesions whereas the administration of saponin fraction of Panax quinquefolium did not. High performance liquid chromatographic analysis demonstrated high percentiles of ginsenoside Rg and ginsenoside $Rh_1$ were evident in saponin fraction of Panax ginseng. Results indicate that the protective effects of Panax ginseng, not Panax quinquefolium, on the TCDD-induced toxicity might be resulted from different compositions of saponins in Panax ginseng.

  • PDF

Analysis of Ginsenosides of Black Ginseng (흑삼의 인삼 사포닌 분석)

  • Han Sung Tai;Whang Wan Kyun;Kim Il Hyuk;Yang Byung Wook;Cho Soon Hyun;Ko Sung Kwon
    • YAKHAK HOEJI
    • /
    • v.49 no.6
    • /
    • pp.490-494
    • /
    • 2005
  • The objective of this study is to provide the basic information for developing a high-value ginseng product using ginseng saponin and prosapogenin. In order to achieve such aim, Ginsenoside compositions of black ginseng (BG) extracts with various solvent conditions were examined by HPLC. The total saponin and the prosapogenin content of 95$\%$ ethyl alcohol extract were higher than that of the either 50$\%$ ethyl alcohol extract or distilled water extract. As a result, the order of the total saponin and the prosapogenin content was 1) 95$\%$ ethyl alcohol,2) 50$\%$ ethyl alcohol,3) the first and second mixture of 95$\%$ ethyl alcohol, distilled water, and 4) distilled water extract. In the case of fine black ginseng (FBG), the first and second mixture extracts of 95$\%$ ethyl alcohol and distilled water were the highest. In addition, the ratio of the protopanaxadiol group and the protopanaxatriol group (PD/PT) showed that the ratio of BG ranged from 0.304 to 0.601, while the ratio of FBG ranged from 1.166 to 1.657.

Construction of a Ginsenoside Content-predicting Model based on Hyperspectral Imaging

  • Ning, Xiao Feng;Gong, Yuan Juan;Chen, Yong Liang;Li, Hongbo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.369-378
    • /
    • 2018
  • Purpose: The aim of this study was to construct a saponin content-predicting model using shortwave infrared imaging spectroscopy. Methods: The experiment used a shortwave imaging spectrometer and ENVI spectral acquisition software sampling a spectrum of 910 nm-2500 nm. The corresponding preprocessing and mathematical modeling analysis was performed by Unscrambler 9.7 software to establish a ginsenoside nondestructive spectral testing prediction model. Results: The optimal preprocessing method was determined to be a standard normal variable transformation combined with the second-order differential method. The coefficient of determination, $R^2$, of the mathematical model established by the partial least squares method was found to be 0.9999, while the root mean squared error of prediction, RMSEP, was found to be 0.0043, and root mean squared error of calibration, RMSEC, was 0.0041. The residuals of the majority of the samples used for the prediction were between ${\pm}1$. Conclusion: The experiment showed that the predicted model featured a high correlation with real values and a good prediction result, such that this technique can be appropriately applied for the nondestructive testing of ginseng quality.