• Title/Summary/Keyword: Analysis of Stack Space

Search Result 26, Processing Time 0.024 seconds

Functional Analysis of Electrode and Small Stack Operation in Solid Oxide Fuel Cell (고체산화물 연료전지의 전극과 스택운영의 기능적 분석)

  • Bae, Joong-Myeon;Kim, Ki-Hyun;Ji, Hyun-Jin;Kim, Jung-Hyun;Kang, In-Yong;Lim, Sung-Kwang;Yoo, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.812-822
    • /
    • 2006
  • This study amis to investigate the functional analysis of anode and cathode materials in Anode supported Solid Oxide Fuel Cell. The concentration polarization of single cell was investigated with CFD (Computational Fluid Dynamics) method for the case of the different morphology by using four types of unit cell and discussed to reduce the concentration polarization. The concentration polarization at anode side effected the voltage loss in Anode supported Solid Oxide Fuel Cell and increased contact areas between fuel gas and anode side could reduce the concentration polarization. For intermediate temperature operation, Anode-supported single cells with thin electrolyte layer of YSZ (Yttria-Stabilized Zirconia) were fabricated and short stacks were built and evaluated. We also developed diesel and methane autothermal reforming (ATR) reactors in order to provide fuels to SOFC stacks. Influences of the $H_2O/C$ (steam to carbon ratio), $O_2/C$ (oxygen to carbon ratio) and GHSV (Gas Hourly Space Velocity) on performances of stacks have been investigated. Performance of the stack operated with a diesel reformer was lower than with using hydrogen as a fuel due to lower Nernst voltage and carbon formation at anode side. The stack operated with a natural gas reformer showed similar performances as with using hydrogen. Effects of various reformer parameters such as $H_2O/C$ and $O_2/C$ were carefully investigated. It is found that $O_2/C$ is a sensitive parameter to control stack performance.

Text-Driven Multiple-Path Discourse Processing for Descriptive Texts

  • Seo, Jungyun
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 1996
  • This paper presents a text-driven discourse analysis system, called DPAS. DPAS constructs a discourse structure by weaving together clauses in the text by finding discourse relations between a clause and the clauses in a context. The basic processing model of DPAS is based on the stack based model of discourse analysis suggested by Grosz and Sidner. We extend the model with dynamic programming method to handle various discourse ambiguities effectively and efficiently. We develop the idea of a context space to keep all information of a context. DPAS parses a text by considering all possible discourse relations between a clause and a context. Since different discourse relations may result in different states of a context, DPAS maintains multiple context spaces for an ambiguous text. Since maintaining all interpretations until the whole text is processed requires too much computing resources, DPAS uses the idea of depth-limited search to limit the search space. If there is more than one discourse relation between an input clause and a context, DPAS constructs context spaces one context space for each discourse relation. Then, DPAS applies heuristics to choose the most desirable context space after it processes some more input clauses. Since the basic idea of DPAS is domain independent, although we used descriptive texts to demonstrate DPAS, we believe the idea of DPAS can be extended to understand other styles of texts.

  • PDF

Signal integrity analysis of system interconnection module of high-density server supporting serial RapidIO

  • Kwon, Hyukje;Kwon, Wonok;Oh, Myeong-Hoon;Kim, Hagyoung
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.670-683
    • /
    • 2019
  • In this paper, we analyzed the signal integrity of a system interconnection module for a proposed high-density server. The proposed server integrates several components into a chassis. Therefore, the proposed server can access multiple computing resources. To support the system interconnection, among the highly integrated computing resources, the interconnection module, which is based on Serial RapidIO, has been newly adopted and supports a bandwidth of 800 Gbps while routing 160 differential signal traces. The module was designed for two different stack-up types on a printed circuit board. Each module was designed into 12- (version 1) and 14-layer (version 2) versions with thicknesses of 1.5T and 1.8T, respectively. Version 1 has a structure with two consecutive high-speed signal-layers in the middle of two power planes, whereas Version 2 has a single high-speed signal placed only in the space between two power planes. To analyze the signal integrity of the module, we probed the S-parameters, eye-diagrams, and crosstalk voltages. The results show that the high-speed signal integrity of Version 2 has a better quality than Version 1, even if the signal trace length is increased.

Structural Analysis of Gasket and GDL for Enhanced Performance of PEMFC (고분자 전해질 연료전지 가스켓 및 GDL의 구조 해석)

  • Yoon, Jin-Young;Park, Jungsun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.642-650
    • /
    • 2008
  • In this paper, structural behavior of Gasket and GDL of a PEMFC stack is studied to improve the performance and to secure the safety. In the Gasket analysis Mooney-Rivlin strain energy function is used to consider hyperelasticity of load and displacement. The material properties is determined by testing specimens of the gasket at uni-axial and equi-biaxial mode and compared with finite element analysis results. By measuring a thickness change, the material property of GDL is determined. The pressure drop of a unit cell is measured along the channel for the clamping force. A cross sectional change of channel base on the experimental data is obtained experimentally and compare with FEM analysis results.

A Comparative Analysis: Various Storage Rules in Container Yards and Their Performances

  • Ma, Yaowen;Kim, Kap-Hwan
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.3
    • /
    • pp.276-287
    • /
    • 2012
  • Determining storage locations of containers is an important issue for efficient operation of container terminals. This study assumes a storage yard with a horizontal layout in which blocks are laid out in parallel to the quay and trucks enter at the side of a block to deliver (receive) a container to (from) the yard crane. Various storage rules for determining storage locations of containers are introduced. Simulation studies are conducted for evaluating various rules. The following guidelines are derived from the result of our simulation study: when designing a block, consider a block configuration in which the longest gantry and the longest trolley travel times of rail-mounted gantry cranes (RMGCs) are similar; do not restrict the types of containers that can be stored in a storage area; if different roles are to be assigned to different storage areas, one possible way is to divide a bay into two areas so that some rows in the bay are allocated to inbound containers while the other rows in the same bay are allocated to outbound containers; reserve the space in bay unit for a high productivity of RMGCs but reserve the space in stack unit when the storage space is not enough; when the storage space is not sufficient, allocate storage location in a way of starting from the end and ending at the middle of a block; for reducing the travel distance of internal trucks, provide a higher priority to a block nearer to the berthing position of the corresponding vessel.

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.

Design Optimization of a 500W Fuel Cell Stack Weight for Small Robot Applications (소형로봇용 500W급 연료전지 스택무게 최적화 설계)

  • Hwang, S.W.;Choi, G.H.;Park, Sam.;Ench, R. Michael;Bates, Alex M.;Lee, S.C.;Kwon, O.S.;Lee, D.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.275-281
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and soon. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

Optimization of a Fuel Cell Stack for Small Robot Systems (소형 로봇용 연료 전지 스택 설계 사양 최적화)

  • Hwang, S.W.;Choi, G.H.;Park, Sam.;Ench, R. Michael;Bates, Alex M.;Lee, S.C.;Kwon, O.S.;Lee, D.H.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.211-216
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and so on. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

  • PDF

Design of the Compound Smart Material Pump for Brake System of Small·Medium Size UAV (중소형 무인기 브레이크 시스템용 복합형 지능재료펌프 설계)

  • Lee, Jonghoon;Hwang, Jaihyuk;Yang, Jiyoun;Joo, Yonghwi;Bae, Jaesung;Kwon, Junyong
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, the design of compound smart materials hydraulic pump that can be applied to a small-medium size UAV having a limited space envelope and weight has been conducted. Compound Smart Material Pump(CSMP) proposed in this paper is composed of a pressurize pump and a flow pump for supplying the high pressure and fluid displacement to overcome the disadvantages of the piezoelectric actuator which has a small strain. Though this compound smart material pump has been designed as small size and lightweight as possible, it can sequentially supply the sufficient large flow rate and pressure required for the brake operation. For the design of CSMP, about 2,700 kg (6,000 lb) class fixed wing manned aircraft was selected. Based on the established requirements, the design of the CSMP have been done by strength, vibration, and fluid flow analysis.

Analysis for Security Vulnerabilities on DSTM Tunneling (DSTM 터널링 보안 취약점 분석)

  • Cho, Hyug-Hyun;Kim, Jeong-Wook;Noh, Bong-Nam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.4
    • /
    • pp.215-221
    • /
    • 2007
  • IPv6 is a protocol to solve the address space limitation of IPv4 by IETF. Many transition mechanism to communicate between IPv4 and IPv6 in mixed IPv4/IPv6 network are proposed. DSTM tunneling is a mechanism that dual stack in IPv6 network is able to communicate with node in IPv4 network by dynamic allocating the IPv4 address. This mechanism supports the execution of IPv4 dependent application without modification at IPv6 network. In this paper, we explain the security vulnerability at DSTM network for DHCP attack, TEP attack, and source spoofing attack then describe the result of attacks.

  • PDF