• Title/Summary/Keyword: Analysis of Kinematic

Search Result 1,492, Processing Time 0.028 seconds

Parametric Study of MD Constitutive Model for Coarse-Grained Soils (조립재료에 대한 MD구성모델의 매개 변수 연구)

  • Choi, Changho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • Coarse-grained soils are typical engineering materials commonly used in many civil engineering applications such as structural fills, subgrade and drainage fills for dam, railway and bridge. Various researches have been performed with related to constitutive laws for numerical analysis of such structures. This paper presents a parametric study for a constitutive model for coarse grained materials. The model is a kind of the bounding surface models based on critical state theory. A distinct feature of the model is to capture the response of coarse-grained materials with different void ratios and confining pressures using a single set of model parameters. The model behavior is defined with a set of elastic parameters, critical state parameters, and model-specific parameters. The parametric study was performed for the model-specific parameters. The result of parametric study shows that the model is capable to capture stress-dilatancy behavior and kinematic-hardening under non-associative plastic flow.

A Study on the Accuracy Analysis of Numerical Cadastral Map by GPS-RTK (GPS-RTK를 이용한 수치지적도의 정확도 분석에 관한 연구)

  • Lee, Dae-Woo;Jung, Young-Dong;Kang, Sang-Gu;Choi, Han-Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.9 no.2 s.18
    • /
    • pp.47-54
    • /
    • 2001
  • The aim of this study is to represent the effective method for undertaking cadastral surveying works through analyzing and comparison of the surveying results both Total Station and GPS surveying techniques. in the value of coordinate of land parcels, the surveying results of using Total Station and Real Time Kinematic GPS surveying are compared and anayzed. As a results, each axis X and Y differences are ${\Delta}X=0.02m\;and\;{\Delta}Y=0.02$. Therefore the latter surveying method is available to use for production of numerical casdastral map at a large scale and for field surveying in farmland adjustment area. Furthermore travers surveying is not needed to be done when horizontal position of the boundary of a land parcel is determined by the method of RTK. It is recognized as a effective and efficient method in rapaid, accurate and economical aspects.

  • PDF

A Biomechanical Comparison of Cushioning and Motion Control Shoes During Running (달리기시 쿠션형과 모션컨트롤형 런닝화 착용에 따른 생체역학적 비교)

  • Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2005
  • Excessive pronation and impact force during running are related to various running injuries. To prevent these injuries, three type of running shoes are used, such as cushioning, stability, and motion control. Although there were may studies about the effect of midsole hardness on impact force, no study to investigate biomechanical effect of motion control running shoes. The purpose of this study was to determine biomechanical difference between cushioning and motion control shoes during treadmill running. Specifically, plantar and rearfoot motion, impact force and loading rate, and insole pressure distribution were quantified and compared. Twenty male healthy runners experienced at treadmill running participated in this study. When they ran on treadmill at 3.83 m/s. Kinematic data were collected using a Motion Analysis eight video camera system at 240 Hz. Impact force and pressure distribution data under the heel of right foot were collected with a Pedar pressure insole system with 26 sensors at 360 Hz. Mean value of ten consecutive steps was calculated for kinematics and kinetics. A dependent paired t-test was used to compare the running shoes effect (p=0.05). For most kinematics, motion control running shoes reduced the range of rearfoot motion compared to cushioning shoes. Runners wearing motion control shoe showed less eversion angle during standing less inversion angle at heel strike, and slower eversion velocity. For kinetics, cushioning shoes has the effect to reduce impact on foot obviously. Runners wearing cushioning shoes showed less impact force and loading rate, and less peak insole pressure. For both shoes, there was greater load on the medial part of heel compared to lateral part. For pressure distribution, runners with cushioning shoes showed lower, especially on the medial heel.

Design and Optimization Study of Active Trasfemoral Prosthesis leg (대퇴 절단 환자를 위한 능동대퇴의지구조 설계 및 최적화 연구)

  • Lee, K.H.;Chung, J.H.;Lee, C.-H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.41-46
    • /
    • 2013
  • IIn this paper, active trasfemoral prosthesis leg is designed for the handicapped who lost their legs upon knee. It is important to design proper knee joint to mimic walking motion of hyman. 1 degree-of-freedom active trasfemoral prosthesis leg is designed with knee joint. Operating angle and torque have been calculated using kinematics of three linkages in prosthesis leg. Finite element analysis of major components is performed to evaluate the safety under operating condition and to reduce weights. Minimum volumes of components are obtained by optimization as satisfying safety requirements. The results show that about 35% of weight of components is reduced.

  • PDF

CAD/CAM System for 5-Axis Machining of Marine Propeller (프로펠러 5축 가공을 위한 CAD/CAM 시스템)

  • Jae-Woong Youn;Jong-Hwan Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.51-62
    • /
    • 1998
  • In this paper, a CAD/CAM system for 5-axis machining of model propeller is introduced. This system has been developed under the environment of personal computer and Windows NT. In order to enhance the productivity, existing text-based design S/W was integrated into this graphic-based system. Non-Uniform Rational B-Spline method is used to represent the sculptured surface of propeller blades and hub using point data, and surface blending between blade and hub is realized in this system. For 5-axis machining of sculptured surface, tool/work collision and interference are checked and inverse kinematic analysis is performed to make NC data. In addition, tool and workpiece are animated on the PC monitor by preparing NC verification module. Finally, optimal cutting conditions are determined empirically and those cutting conditions are integrated into this S/W so that the whole process from design to machining can be done automatically.

  • PDF

Radial Velocities of Galactic Planetary Nebulae (행성상성운의 분포와 시선속도 연구)

  • Huh Seung-Jae;Hyung Siek
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.725-731
    • /
    • 2005
  • The distribution and kinematic information of the planetary nebula (PN) may provide a hint about the Galactic dynamics and evolutionary history. An analysis of the Galactic planetary nebular distribution and kinematics (distance, direction, velocity) is underwent, using the 502 PNs observational data given in the ‘THE STRASBOURG-ESO CATALOGUE OF GALACTIC PLANETARY NEBULAE.’ The representative average radial velocities, $(V_r)s$ is derived in six different directions of galactic latitudes, $l = 0^{\circ},\;90{\circ},\;180{\circ},\;270{\circ},$ plus apex and antapex $(56{\circ},\;236{\circ})$, respectively. The PNe near the apex approaches to the Sun with radial velocities, which values are $(V_r) = 69.0 km/s;$ whereas, those near the antapex recedes with $(V_r) = 64.1 km/s$, respectively. No particular trends are found along the z direction, although more PNs are found below the Galactic plane. This implies that the 3rd generation objects, PNs, move slowly on the galactic plane compared to the 4th generation stars like the Sun, indicative of possible interaction.

Change in Kinetics and Kinematics during 1-Footed Drop Landing with an Increase in Upper Body Weight

  • Lee, Jin-Taek;David, O'Sullivan
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The purpose of this study was to investigate changes in kinetic and kinematic variables associated with an increase in upper body weight. Eighteen healthy male university students($175.96{\pm}4.19\;cm$, $70.79{\pm}8.26\;kg$) participated. Eight motion analysis cameras(Qualysis Oqus 500) and 2 force AMTI platforms(Advanced Mechanical Technologies Inc. OR6-7, US) were used to record motion and forces during the drop landing at a frequency of 120 Hz and 1200 Hz, respectively. QTM software(Qualisys Track Manager) was used to record the data, and the variables were analyzed with Visual 3D and Matlab 2009. For the drop landing, a box of $4{\times}2{\times}0.46\;m$ was constructed from wood. Knee and ankle maximum flexion angle, knee flexion angle, knee and ankle angle at landing, time for maximum ankle flexion after landing, and time for maximum knee flexion after landing were calculated. There was a significant change in the time for maximum and minimum ground force reaction and the time for maximum dorsal flexion after landing(p<.05) with increasing weight. There was no significant change for the hip, knee, and ankle ROM, whereas there was an increase in the angle ROM as the weight increased, in the order of ankle, knee, and hip ROM. This result shows that the ankle joint ROM increased with increasing weight for shock attenuation during the drop landing. There was a trend for greater ankle ROM than knee ROM, but there was no clear change in the ROM of the hip joint with increasing weight. In conclusion, this study shows the importance of ankle joint flexibility and strength for safe drop landing.

The Relationship between the Distance and Kinematical Parameters of Javelin in Korean Male Javelin Throwers (한국 남자 창던지기 선수들의 창의 운동학적 요인과 기록과의 관계)

  • Kim, Woo-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.3
    • /
    • pp.217-227
    • /
    • 2014
  • The purpose of this study was to investigate the relationship between distance and factors of javelin in korean male's javelin throwing. To accomplish this purpose, the analyzed trail selected total 29 trails (subjects 9) recorded more than 65 m in the 93rd National Sports Festival. The Kwon3D 3.1 version was used to obtain the three dimensional coordinates about the top, grip, end of javelin. And the kinematic data such as projection factors and direction angle of javelin calculated using Matlab2009a program. The statical analysis on the records (n=29) were used to Pearson's product moment correlation coefficient. There was a statistically positive relationship between the records and horizontal velocity (r=.866, ${\rho}$<.01), height (r=.541, ${\rho}$ <.001), height rate (r=.373, ${\rho}$ <.05) and horizontal displacement of javelin (r=.749, ${\rho}$ <.01), but the medial/lateral velocity showed a negative relationship to r=-.663 (${\rho}$ <.01). The attack and yaw angle showed not a significant relationship between the records, but the medial-lateral tilt (E1:r =-.557 [p<.01)] E2:r=-.629 [${\rho}$<.01], E3:r=-.528 [${\rho}$ <.01]) and attitude angle (E2:r=-.629 [[${\rho}$<.01], E3:r=-.619 [${\rho}$ <.01]) of javelin showed a negative relationship between the records, as well as the projection angle of javelin (r=-.419, ${\rho}$ <.05) showed a negative relationship between the records.

Finite Element Simulation of Hysteretic Behavior of Structural Stainless Steel under Cyclic Loading (반복하중을 받는 스테인리스강의 이력거동 해석모델 개발)

  • Jeon, Jun-Tai
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.186-197
    • /
    • 2019
  • Purpose: This study intends to develop a nonlinear cyclic plasticity damage model in the framework of finite element formulation, which is capable of taking large deformation effects into account, in order to accurately predict the hysteretic behavior of stainless steel structures. Method: The new cyclic constitutive equations that utilize the combined isotropic-kinematic hardening rule for plastic deformation is incorporated into the damage mechanic model in conjunction with the large strain formulation. The damage growth law is based on the experimental observations that the evolution of microvoids yields nonlinear damage accumulation with plastic deformation. The damage model parameters and the procedure for their identification are presented. Results and Conclusion: The proposed nonlinear damage model has been verified by simulating uniaxial strain-controlled monotonic and cyclic loading tests, and successfully applied to a thin-walled stainless steel pipe subjected to constant and alternating strain-controlled cyclic loadings.

Design of height adjustable hanger using 4-bar linkage (4절 링크기구를 이용한 높이 조절 행거 설계)

  • Seyun Park;Hyuneun Lee;Yongsu Lee;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.525-530
    • /
    • 2023
  • Although double-stage hanger is used in many homes for its space utilization and ease of installation, it is inconvenient for users to take off clothes hung on the upper bar due to its high height. Therefore, this paper proposes a new type of double-stage hanger that allows users to easily hang or take out clothes hung on the upper bar while maintaining the function of the existing double-stage hanger. 4-bar link mechanism is applied so that the upper bar can come down to a convenient height with one operation. In addition, an appropriate link shape, length, and joint type are selected so that the height is adjusted three-dimensionally to prevent overlapping of clothes hanging on upper/lower bars. FEA analysis is performed to ensure that the presented hanger shape can support the load of clothes during height adjustment and the feasibility of the three-dimensional height adjustment hanger is verified through fabrication.