• Title/Summary/Keyword: Analysis of Actual State

Search Result 588, Processing Time 0.038 seconds

Fuzzy-Neural Control for Speed Control and estimation of SPMSM drive (SPMSM 드라이브의 속도제어 및 추정을 위한 퍼지-뉴로 제어)

  • Nam Su-Myeong;Lee Jung-Chul;Lee Hong-Gyun;Lee Young-Sil;Park Bung-Sang;Chung Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1251-1253
    • /
    • 2004
  • This paper is proposed a fuzzy neural network controller based on the vector controlled surface permanent magnet synchronous motor(SPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of SPMSM using neuro-fuzzy control(NFC) and estimation of speed using artificial neural network(ANN) Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

  • PDF

ANN Sensorless Control of Induction Motor Dirve with AFLC (AFLC에 의한 유도전동기 드라이브의 ANN 센서리스 제어)

  • Chung, Dong-Hwa;Nam, Su-Myeong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.57-64
    • /
    • 2006
  • This paper is proposed for a artificial neural network(ANN) sensorless control based on the vector controlled induction motor drive, or proposes a adaptive fuzzy teaming control(AFLC). The fuzzy logic principle is first utilized for the control rotor speed. AFLC scheme is then proposed in which the adaptation mechanism is executed using fuzzy logic. Also, this paper is proposed for a method of the estimation of speed of induction motor using ANN Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the analysis results to verify the effectiveness of the new method.

An Analysis of Stabilizing Process of Cable Dome and Its Application (케이블 돔의 안정화 이행과정해석 및 적용)

  • HwangBo, Seok;Yoo, Yong-Ju;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.69-76
    • /
    • 2006
  • Cable dome is one of tension structure which is gradually stabilized by tensioning tables from initially unstable state to finally stable state. This stabilizing process is not able to be developed by general analysis because some cables endure compression forces during stabilizing process. Thus, this paper uses dynamic relaxation method to solve this problem. To apply this stabilizing process analysis to the actual project, this paper deals with cable dome roof of Seoul Olympic Gymnasium. Finally, this paper prove the usefulness of stabilizing process analysis by comparing the analysis results and the measurements.

  • PDF

Multiscale features and information extraction of online strain for long-span bridges

  • Wu, Baijian;Li, Zhaoxia;Chan, Tommy H.T.;Wang, Ying
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.679-697
    • /
    • 2014
  • The strain data acquired from structural health monitoring (SHM) systems play an important role in the state monitoring and damage identification of bridges. Due to the environmental complexity of civil structures, a better understanding of the actual strain data will help filling the gap between theoretical/laboratorial results and practical application. In the study, the multi-scale features of strain response are first revealed after abundant investigations on the actual data from two typical long-span bridges. Results show that, strain types at the three typical temporal scales of $10^5$, $10^2$ and $10^0$ sec are caused by temperature change, trains and heavy trucks, and have their respective cut-off frequency in the order of $10^{-2}$, $10^{-1}$ and $10^0$ Hz. Multi-resolution analysis and wavelet shrinkage are applied for separating and extracting these strain types. During the above process, two methods for determining thresholds are introduced. The excellent ability of wavelet transform on simultaneously time-frequency analysis leads to an effective information extraction. After extraction, the strain data will be compressed at an attractive ratio. This research may contribute to a further understanding of actual strain data of long-span bridges; also, the proposed extracting methodology is applicable on actual SHM systems.

A Study on the Principal Component Analysis of Anthropometric Data (인체계측치(人體計測値)의 주성분분석(主成分分析)에 관한 연구(硏究))

  • Lee, Sang-Do;Jeong, Jung-Hui;Kim, Geuk-Bae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.3-11
    • /
    • 1983
  • Anthropometric data is most basic materials in the all studies related with it. Therefore, in anthropometric data, not only consideration of the state of variance, but more various analysis is needed. This study selected the 13 parts that properly show a whole characteristics of human body and, anthropometric data were obtained through the actual measurements for male and female workers who were engaged in production factory. And, to interpret anthropometric data, principal component analysis of multivariate analysis methods was applied.

  • PDF

A response surface method based on sub-region of interest for structural reliability analysis

  • Zhao, Weitao;Shi, Xueyan;Tang, Kai
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.587-602
    • /
    • 2016
  • In structural reliability analysis, the response surface method is widely adopted because of its numerical efficiency. It should be understood that the response function must approximate the actual limit state function accurately in the main region influencing failure probability where it is evaluated. However, the size of main region influencing failure probability was not defined clearly in current response surface methods. In this study, the concept of sub-region of interest is constructed, and an improved response surface method is proposed based on the sub-region of interest. The sub-region of interest can clearly define the size of main region influencing failure probability, so that the accuracy of the evaluation of failure probability is increased. Some examples are introduced to demonstrate the efficiency and the accuracy of the proposed method for both numerical and implicit limit state functions.

A multi-state model approach for risk analysis of pensions for married couples with consideration of mortality difference by marital status

  • Stefani, Anastasia;Kwon, Hyuk-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.6
    • /
    • pp.611-626
    • /
    • 2021
  • Marital status has been identified as an important risk factor affecting adult mortality. Many studies have found that marriage has positive effects on mortality and increases life expectancy. Since most pension contracts providing retirement income are provided to married couples, mortality assumption for actuarial valuation based on the entire population is likely to overestimate the actual mortality of the group of beneficiaries specified in the contracts. This study considered the differences in mortality according to marital status to analyze the length and value of the payments of a typical pension contract for a married couple. The study quantified the effect on actuarial measurements of considering marital status in mortality assumptions with a multi-state model framework using Korean experience mortality data organized by marital status. The results of analysis indicate that considering marital status in mortality assumptions improves mortality risk management.

A Study on Truss Model Incorporated with Internal Force State Factor for Shear Failure Mechanism in slender RC Beam (내력상태계수 개념을 도입한 철근콘크리트 보의 전단파괴 트러스모델에 관한 연구)

  • Cheong, Jae-Pyong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.609-614
    • /
    • 2001
  • This paper is to explain reasonable shear behavior that can apply usually to reinforced concrete beams on the basic concepts of existent analysis and experimental research information. This study is succession $paper^{2) 3) 4) 5)}$ of treatise announced in existing and main control variable of reinforced concrete beams with stirrups used internal force state factor($\alpha$). Shear failure of reinforced concrete beams with stirrups is Influenced greatly because of the actual geometrical shape(a/d) of the concrete and flexural reinforcement steel ratio, stirrup reinforcement ratio and concrete compression strength, size effect etc. Therefore, shear behavior of reinforced concrete beams with stirrups that flexural crack is happened can be explained easily through proper extent proposal of internal force state factor($\alpha$) that express internal force state flowing. Use existent variable truss model by analysis model to explain arch action. Also, wish to compose each failure factors and correlation with internal force state factor by function, and when diagonal cracks happens, internal force state factor($\alpha$) study whether shear stress and some effect are.

  • PDF

Analysis of Improvement Effects for Flight Training Quality (비행훈련 품질 향상을 위한 개선 효과 분석)

  • Kang, Dal Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.82-88
    • /
    • 2020
  • Currently, flight training is not only a technical instruction that teaches maneuvering operations, but has expertise equal to that of general disciplines. Therefore, flight instructors must have academic knowledge and flight skills. As flight instructors are the first teacher in flight training for students who have never experienced actual flight control, the behavior of flight instructors will affect the students' flight education. Therefore, the influence of flight instructors for students are quite large compared to other educational institutions. In this study, the factors of instructional behavior were determined, and the actual state of instructional behavior of flight instructors were confirmed through students' survey. Improvements were derived to solve the problems identified in the survey results. For the follow-up analysis, improvements were applied to the flight instructors for 8 months, and then re-question was conducted to the same students who responded to the first questionnaire to find out the difference in results before and after through a paired t-test.

Development and Empirical Validation of an Electric Vehicle Battery Consumption Analysis Model (전기차 배터리 소모량 분석모형 개발 및 실증)

  • In-Seon Suh;Young-Mi Lee;Sang-Yul Oh;Myeong-Chang Gwak;Hyeon-Ji Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.523-532
    • /
    • 2024
  • In popular tourist destinations such as Jeju and Gangwon, electric rental cars are increasingly adopted. However, sudden battery drain due to weather conditions can pose safety issues. To address this, we developed a battery consumption analysis model that considers resistive energy factors such as acceleration, rolling resistance, and aerodynamic drag. Focusing on the effects of ambient temperature and wind speed, the model's performance was evaluated during an empirical validation period from November to December 2023. Comparing predicted and actual state of charge (SoC) across different routes identified ambient temperature, wind speed, and driving time as major sources of error. The mean absolute error (MAE) increased with lower temperatures due to reduced battery efficiency. Higher wind speeds on routes 1 and 6 resulted in larger errors, indicating the model's limitation in considering only tailwinds for aerodynamic drag calculations. Additionally, longer driving times led to higher actual SoC than predicted, suggesting the need to account for varying driver habits influenced by road conditions. Our model, providing more accurate SoC predictions to prevent battery depletion incidents, shows high potential for application in navigation apps for electric vehicle users in tourist areas. Future research should endeavor to the model by including wind direction, HVAC system usage, and braking frequency to improve prediction accuracy further.