• Title/Summary/Keyword: Analysis frameworks

Search Result 410, Processing Time 0.02 seconds

Comparative Study of Evaluating the Trustworthiness of Data Based on Data Provenance

  • Gurjar, Kuldeep;Moon, Yang-Sae
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.234-248
    • /
    • 2016
  • Due to the proliferation of data being exchanged and the increase of dependency on this data for critical decision-making, it has become imperative to ensure the trustworthiness of the data at the receiving end in order to obtain reliable results. Data provenance, the derivation history of data, is a useful tool for evaluating the trustworthiness of data. Various frameworks have been proposed to evaluate the trustworthiness of data based on data provenance. In this paper, we briefly review a history of these frameworks for evaluating the trustworthiness of data and present an overview of some prominent state-of-the-art evaluation frameworks. Moreover, we provide a comparative analysis of two key frameworks by evaluating various aspects in an executional environment. Our analysis points to various open research issues and provides an understanding of the functionalities of the frameworks that are used to evaluate the trustworthiness of data.

A preliminary Study on Regulatory Frameworks for Consumer Product Safty Policy (소비자상품안전을 위한 규제분석틀에 대한 기초연구)

  • 김용희
    • Journal of Families and Better Life
    • /
    • v.7 no.2
    • /
    • pp.213-223
    • /
    • 1989
  • Decision frameworks for product safty policy are developed in theory and practice. Product characteristic approach and expected utility analysis are applied to situations involving risk and misinformation. Eight types of regulatory frameworks are explained and critiqued form practical purposes on behalf of consumer policy makers. Various international organizations and their roles are briefly reviewed.

  • PDF

A Comparative Analysis of Deep Learning Frameworks for Image Learning (이미지 학습을 위한 딥러닝 프레임워크 비교분석)

  • jong-min Kim;Dong-Hwi Lee
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.129-133
    • /
    • 2022
  • Deep learning frameworks are still evolving, and there are various frameworks. Typical deep learning frameworks include TensorFlow, PyTorch, and Keras. The Deepram framework utilizes optimization models in image classification through image learning. In this paper, we use the TensorFlow and PyTorch frameworks, which are most widely used in the deep learning image recognition field, to proceed with image learning, and compare and analyze the results derived in this process to know the optimized framework. was made.

Subtractive versus additive indirect manufacturing techniques of digitally designed partial dentures

  • Snosi, Ahmed Mamdouh;Lotfy, Shaimaa Mohamed;Thabet, Yasmine Galaleldin;Sabet, Marwa Ezzat;Rizk, Fardos Nabil
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.327-332
    • /
    • 2021
  • PURPOSE. The purpose of this in vitro study was to evaluate the accuracy of digitally designed removable partial denture (RPD) frameworks, constructed by additive and subtractive methods castable resin patterns, using comparative 3D analysis. MATERIALS AND METHODS. A Kennedy class III mod. 1 educational maxillary model was used in this study. The cast was scanned after modification, and a removable partial denture framework was digitally designed. Twelve frameworks were constructed. Two groups were defined: Group A: six frameworks were milled with castable resin, then casted by the lost wax technique into Co-Cr frameworks; Group B: six frameworks were printed with castable resin, then casted by the lost wax technique into Co-Cr frameworks. Comparative 3D analysis was used to measure the accuracy of the fabricated frameworks using Geomagic Control X software. Student's t-test was used for comparing data. P value ≤ .05 was considered statistically significant. RESULTS. Regarding the accuracy of the occlusal rests, group A (milled) (0.1417 ± 0.0224) showed significantly higher accuracy than group B (printed) (0.02347 ± 0.0221). The same results were found regarding the 3D comparison of the overall accuracy, in which group A (0.1501 ± 0.0205) was significantly more accurate than group B (0.179 ± 0.0137). CONCLUSION. In indirect fabrication techniques, subtractive manufacturing yields more accurate RPDs than additive manufacturing.

Biomechanical behavior of CAD/CAM cobalt-chromium and zirconia full-arch fixed prostheses

  • Barbin, Thais;Silva, Leticia Del Rio;Veloso, Daniele Valente;Borges, Guilherme Almeida;Presotto, Anna Gabriella Camacho;Barao, Valentim Adelino Ricardo;Groppo, Francisco Carlos;Mesquita, Marcelo Ferraz
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.329-337
    • /
    • 2020
  • PURPOSE. To verify the influence of computer-aided design/computer-aided manufacturing (CAD/CAM) implant-supported prostheses manufactured with cobalt-chromium (Co-Cr) and zirconia (Zr), and whether ceramic application, spark erosion, and simulation of masticatory cycles modify biomechanical parameters (marginal fit, screw-loosening torque, and strain) on the implant-supported system. MATERIALS AND METHODS. Ten full-arch fixed frameworks were manufactured by a CAD/CAM milling system with Co-Cr and Zr (n=5/group). The marginal fit between the abutment and frameworks was measured as stated by single-screw test. Screw-loosening torque evaluated screw stability, and strain analysis was explored on the implant-supported system. All analyses were performed at 3 distinct times: after framework manufacturing; after ceramic application in both materials' frameworks; and after the spark erosion in Co-Cr frameworks. Afterward, stability analysis was re-evaluated after 106 mechanical cycles (2 Hz/150-N) for both materials. Statistical analyses were performed by Kruskal-Wallis and Dunn tests (α=.05). RESULTS. No difference between the two materials was found for marginal fit, screwloosening torque, and strain after framework manufacturing (P>.05). Ceramic application did not affect the variables (P>.05). Spark erosion optimized marginal fit and strain medians for Co-Cr frameworks (P<.05). Screw-loosening torque was significantly reduced by masticatory simulation (P<.05) regardless of the framework materials. CONCLUSION. Co-Cr and Zr frameworks presented similar biomechanical behavior. Ceramic application had no effect on the biomechanical behavior of either material. Spark erosion was an effective technique to improve Co-Cr biomechanical behavior on the implant-supported system. Screw-loosening torque was reduced for both materials after masticatory simulation.

Commonality and Variability Analysis Method for UML CASE Tool Frameworks (UML CASE 도구 프레임워크를 위한 공통성 및 가변성)

  • Choi, Hwan-Bok;Lee, Eun-Ser;Kim, Yun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.16D no.6
    • /
    • pp.927-934
    • /
    • 2009
  • This paper presents a commonality and variability analysis method for UML CASE tool frameworks. Commonality and Variability analysis increase extension and reusability by separating common area and variable area. We suggest class category based on property and the notation to represent commonality and variability. It is also implements frameworks based on analysis method and verify method using defect removal efficiency.

Trueness of 3D printed partial denture frameworks: build orientations and support structure density parameters

  • Hussein, Mostafa Omran;Hussein, Lamis Ahmed
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.3
    • /
    • pp.150-161
    • /
    • 2022
  • PURPOSE. The purpose of the study was to assess the influence of build orientations and density of support structures on the trueness of the 3D printed removable partial denture (RPD) frameworks. MATERIALS AND METHODS. A maxillary Kennedy class III and mandibular class I casts were 3D scanned and used to design and produce two 3D virtual models of RPD frameworks. Using digital light processing (DLP) 3D printing, 47 RPD frameworks were fabricated at 3 different build orientations (100, 135 and 150-degree angles) and 2 support structure densities. All frameworks were scanned and 3D compared to the original virtual RPD models by metrology software to check 3D deviations quantitatively and qualitatively. The accuracy data were statistically analyzed using one-way ANOVA for build orientation comparison and independent sample t-test for structure density comparison at (α = .05). Points study analysis targeting RPD components and representative color maps were also studied. RESULTS. The build orientation of 135-degree angle of the maxillary frameworks showed the lowest deviation at the clasp arms of tooth 26 of the 135-degree angle group. The mandibular frameworks with 150-degree angle build orientation showed the least deviation at the rest on tooth 44 and the arm of the I-bar clasp of tooth 45. No significant difference was seen between different support structure densities. CONCLUSION. Build orientation had an influence on the accuracy of the frameworks, especially at a 135-degree angle of maxillary design and 150-degree of mandibular design. The difference in the support's density structure revealed no considerable effect on the accuracy.

Cooperative Hybrid-ARQ Protocols: Unified Frameworks for Protocol Analysis

  • Byun, Il-Mu;Kim, Kwang-Soon
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.759-769
    • /
    • 2011
  • Cooperative hybrid-automatic repeat request (HARQ) protocols, which can exploit the spatial and temporal diversities, have been widely studied. The efficiency of cooperative HARQ protocols is higher than that of cooperative protocols because retransmissions are only performed when necessary. We classify cooperative HARQ protocols as three decode-and-forward-based HARQ (DF-HARQ) protocols and two amplified-and-forward-based HARQ (AF-HARQ) protocols. To compare these protocols and obtain the optimum parameters, two unified frameworks are developed for protocol analysis. Using the frameworks, we can evaluate and compare the maximum throughput and outage probabilities according to the SNR, the relay location, and the delay constraint. From the analysis we can see that the maximum achievable throughput of the DF-HARQ protocols can be much greater than that of the AF-HARQ protocols due to the incremental redundancy transmission at the relay.

A Comparative Study on Unit and Lesson Frameworks of Elementary Mathematics Textbooks and Research on Teachers' Preference (초등학교 수학 교과서의 구성 체제 비교 및 교사 선호도 조사)

  • Kim, Pansoo;Lim, Miin;Chang, Hyewon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.21 no.2
    • /
    • pp.263-289
    • /
    • 2017
  • New mathematics textbooks for elementary school students are under development according to the 2015 national revised curriculum. Not only contents but also framework of textbooks may be interesting to the mathematics educators and researchers. Considering the high dependency on textbooks in elementary classrooms, the influence of the framework of textbooks in mathematics learning cannot be overlooked. The unit and lesson frameworks of the textbook are important because they are directly related to the quality of mathematic lessons, especially when teachers make a lesson plan based on the unit and lesson frameworks of the textbook. This study is to analyse the unit and lesson frameworks of elementary school mathematics textbooks and to find out elementary school teachers' preference about its analysed key points. For longitudinal analysis, we selected 3rd-grade mathematics textbooks of 5th, 6th, 7th, the 2007, and the 2009 national revised curriculums. For horizontal analysis, we selected 3rd-grade mathematics textbooks of Korea, Japan, United States and Finland. We compared unit and lesson frameworks of various textbooks, and abstracted key elements of the textbook frameworks, and constructed survey questions. Looking at results from survey questions based on analysed key points, we were able to grasp the teachers' preference for unit and lesson frameworks for mathematics textbook. Based on the results of this study, some implications for the development of framework for new mathematics textbooks are suggested.

  • PDF

CNN model transition learning comparative analysis based on deep learning for image classification (이미지 분류를 위한 딥러닝 기반 CNN모델 전이 학습 비교 분석)

  • Lee, Dong-jun;Jeon, Seung-Je;Lee, DongHwi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.370-373
    • /
    • 2022
  • Recently, various deep learning framework models such as Tensorflow, Pytorch, Keras, etc. have appeared. In addition, CNN (Convolutional Neural Network) is applied to image recognition using frameworks such as Tensorflow, Pytorch, and Keras, and the optimization model in image classification is mainly used. In this paper, based on the results of training the CNN model with the Paitotchi and tensor flow frameworks most often used in the field of deep learning image recognition, the two frameworks are compared and analyzed for image analysis. Derived an optimized framework.

  • PDF