• Title/Summary/Keyword: Analysis Modeling

Search Result 12,328, Processing Time 0.039 seconds

Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures

  • Choi, Joonho;Kim, Heesun;Haj-ali, Rami
    • Steel and Composite Structures
    • /
    • 제10권2호
    • /
    • pp.129-149
    • /
    • 2010
  • The objective of this study is to formulate a general 3D material-structural analysis framework for the thermomechanical behavior of steel-concrete structures in a fire environment. The proposed analysis framework consists of three sequential modeling parts: fire dynamics simulation, heat transfer analysis, and a thermomechanical stress analysis of the structure. The first modeling part consists of applying the NIST (National Institute of Standards and Technology) Fire Dynamics Simulator (FDS) where coupled CFD (Computational Fluid Dynamics) with thermodynamics are combined to realistically model the fire progression within the steel-concrete structure. The goal is to generate the spatial-temporal (ST) solution variables (temperature, heat flux) on the surfaces of the structure. The FDS-ST solutions are generated in a discrete form. Continuous FDS-ST approximations are then developed to represent the temperature or heat-flux at any given time or point within the structure. An extensive numerical study is carried out to examine the best ST approximation functions that strike a balance between accuracy and simplicity. The second modeling part consists of a finite-element (FE) transient heat analysis of the structure using the continuous FDS-ST surface variables as prescribed thermal boundary conditions. The third modeling part is a thermomechanical FE structural analysis using both nonlinear material and geometry. The temperature history from the second modeling part is used at all nodal points. The ABAQUS (2003) FE code is used with external user subroutines for the second and third simulation parts in order to describe the specific heat temperature nonlinear dependency that drastically affects the transient thermal solution especially for concrete materials. User subroutines are also developed to apply the continuous FDS-ST surface nodal boundary conditions in the transient heat FE analysis. The proposed modeling framework is applied to predict the temperature and deflection of the well-documented third Cardington fire test.

수치해석을 위한 변형된 난류 다공성 모델링 (A Modified Turbulent Porous Modeling for Numerical Analysis)

  • 정길완;이관수
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.875-882
    • /
    • 2002
  • The modeling for turbulent flow through a porous media has not been confirmed because of a undetermined constant which appears in the governing equations. In present study, the turbulent porous modeling based on the local thermal equilibrium has been extended to the turbulent clear flow. A undetermined constant is also suggested by microscopic analysis. The microscopic analysis is performed in the flat tube with micro-channels, and it confirms that the undetermined constant is 0.99. It is shown that the results of the macroscopic analysis using confirmed constant agree well with those of the microscopic analysis with a maximum error of 3.5%.

통계적 에너지 해석 모델을 이용한 건설 장비 차실 설계에 관한 연구 (Design Sensitivity Studies for Statistical Energy Analysis Modeling of Construction Vehicle Cab)

  • 채장범
    • 소음진동
    • /
    • 제8권4호
    • /
    • pp.609-615
    • /
    • 1998
  • In recent years there has been an increasing emphasis on shortening design cycles for bringing products to market. This requires the development of computer aided engineering tools which allow analysts to quickly evaluate the effect of design changes on noise, vibration, and harshness. Statistical Energy Analysis (SEA) modeling is a valuable tool for predicting noise and vibration as SEA models are inherently simpler and more robust than deterministic models. SEA modeling can be combined with design sensitivity analysis(DSA) to identify design changes which give the largest performance benefit. This paper describes SEA modeling of an equipment cab. SEA predictions are compared to test data, showing good agreement. The use of design sensitivity analysis in improving cab design is then demonstrated.

  • PDF

Sub-modeling을 이용한 end-to-end 문합의 비선형 해석 (Nonlinear Analysis of End-to-End Anastomosis Using Sub-modeling)

  • 한근조;안성찬;심재준
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.192-198
    • /
    • 2003
  • A finite element analysis of end-to-end artery/PTFE anastomosis has been presented in this study to evaluate the distribution of compliance and stresses in the vicinity of the anastomosis due to any mismatch in compliance characteristics. The artery wall was assumed to be made of linear isotropic material in this simplified model and a nonlinear analysis and convergency study with respect to increasing meshed element numbers were performed with a mean artery pressure loading of the artery-PTFE model. Also, sub-modeling method was Introduced to progress the accuracy of the finite element analysis. The results are as follow : 1. A hypercompliant zone on the artery side was observed around 4.Omm from the anastomosis and a high hoop stresses in the wall of artery and PTFE was dominant. 2. An artery displays large deformation so that nonlinear analysis and sub-modeling method was used. 3. An anastomosis with the thinner thickness and larger diameter PTFE (B type) could reduce the compliance disagreement.

제품정보관리 시스템 개발을 위한 기능 분석에 관한 연구 (A Study on the Functional Requirement Analysis for the Development of PDM System)

  • 한관희;박찬우
    • 한국CDE학회논문집
    • /
    • 제7권1호
    • /
    • pp.42-56
    • /
    • 2002
  • Presented in this study is a top-down functional requirement analysis procedure and the desired functionalities for PDM system development, and the benefits of top-down approach over a conventional bottom-up approach is also shown. For the purpose of top-down requirement analysis for PDM system, this study proposes 4P modeling view. 4P modeling view is defined as a modeling perspective for classifying functional requirements and integrating product-related information objects that must be man-aged within PDM systems. Based on 4P modeling templates, benchmarking analysis of commercially major PDM products is conducted and as a result of this analysis, this study suggests desired functionalities for PDM system.

Analysis of Laughter Therapy Trend Using Text Network Analysis and Topic Modeling

  • LEE, Do-Young
    • 웰빙융합연구
    • /
    • 제5권4호
    • /
    • pp.33-37
    • /
    • 2022
  • Purpose: This study aims to understand the trend and central concept of domestic researches on laughter therapy. For the analysis, this study used total 72 theses verified by inputting the keyword 'laughter therapy' from 2007 to 2021. Research design, data and methodology: This study performed the development and analysis of keyword co-occurrence network, analyzed the types of researches through topic modeling, and verified the visualized word cloud and sociogram. The keyword data that was cleaned through preprocessing, was analyzed in the method of centrality analysis and topic modeling through the 1-mode matrix conversion process by using the NetMiner (version 4.4) Program. Results: The keywords that most appeared for last 14 years were laughter therapy, depression, the elderly, and stress. The five topics analyzed in thesis data from 2007 to 2021 were therapy, cognitive behavior, quality of life, stress, and the elderly. Conclusions: This study understood the flow and trend of research topics of domestic laughter therapy for last 14 years, and there should be continuous researches on laughter therapy, which reflects the flow of time in the future.

네크워크분석을 위한 계산지모형 (A spreadsheet modeling for network analysis)

  • 이호창
    • 경영과학
    • /
    • 제11권1호
    • /
    • pp.59-72
    • /
    • 1994
  • In this paper we examine potentials of a spreadsheet program, one of the most widly available software system, as a mathematical optimization modeling tool. For an illustrative example, a shortest path problem is modeled on Lotus-123 for practical use and an implementational framework and a general guide to the spreadsheet modeling of network analysis is provided.

  • PDF

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.

Self-adaptive sampling for sequential surrogate modeling of time-consuming finite element analysis

  • Jin, Seung-Seop;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • 제17권4호
    • /
    • pp.611-629
    • /
    • 2016
  • This study presents a new approach of surrogate modeling for time-consuming finite element analysis. A surrogate model is widely used to reduce the computational cost under an iterative computational analysis. Although a variety of the methods have been widely investigated, there are still difficulties in surrogate modeling from a practical point of view: (1) How to derive optimal design of experiments (i.e., the number of training samples and their locations); and (2) diagnostics of the surrogate model. To overcome these difficulties, we propose a sequential surrogate modeling based on Gaussian process model (GPM) with self-adaptive sampling. The proposed approach not only enables further sampling to make GPM more accurate, but also evaluates the model adequacy within a sequential framework. The applicability of the proposed approach is first demonstrated by using mathematical test functions. Then, it is applied as a substitute of the iterative finite element analysis to Monte Carlo simulation for a response uncertainty analysis under correlated input uncertainties. In all numerical studies, it is successful to build GPM automatically with the minimal user intervention. The proposed approach can be customized for the various response surfaces and help a less experienced user save his/her efforts.

Ship Type 해양 구조물 전선 해석 시 Topside와 Interface가 Hull에 미치는 영향 연구 (A Study on the Effect of Topside and Interface on Hull in Whole Ship Analysis of Ship Type Offshore Structure)

  • 서준규;강호윤;박정기
    • 대한조선학회논문집
    • /
    • 제58권5호
    • /
    • pp.314-321
    • /
    • 2021
  • In the existing whole ship analysis, topside was modeled as mass element. However recently, the topside is modeled as beam element due to the owner's requirement to improve the maturity of the whole ship FE model. To follow the owner'srequirement, detailed information for topside drawing and modeling, which may delay analysis schedule, is needed. However, it is hard to respond effectively to this matter due to the lack of study on the topside from the hull perspective. Therefore in this study, the effect of the topside on the hull is investigated when the topside is modeled as a mass element or beam element respectively. In addition, the interface modeling method is analyzed to verify modeling method used in the existing whole ship analysis. The results indicate that the interface and topside modeling method used in existing whole ship analysis are appropriate. This conclusion will be the technical basis for responding to owner's requirement about the topside modeling method.