• Title/Summary/Keyword: Analysis Conditions

Search Result 23,622, Processing Time 0.049 seconds

Development of a human reliability analysis (HRA) guide for qualitative analysis with emphasis on narratives and models for tasks in extreme conditions

  • Kirimoto, Yukihiro;Hirotsu, Yuko;Nonose, Kohei;Sasou, Kunihide
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.376-385
    • /
    • 2021
  • Probabilistic risk assessment (PRA) has improved its elemental technologies used for assessing external events since the Fukushima Daiichi Nuclear Power Station Accident in 2011. HRA needs to be improved for analyzing tasks performed under extreme conditions (e.g., different actors responding to external events or performing operations using portable mitigation equipment). To make these improvements, it is essential to understand plant-specific and scenario-specific conditions that affect human performance. The Nuclear Risk Research Center (NRRC) of the Central Research Institute of Electric Power Industry (CRIEPI) has developed an HRA guide that compiles qualitative analysis methods for collecting plant-specific and scenario-specific conditions that affect human performance into "narratives," reflecting the latest research trends, and models for analysis of tasks under extreme conditions.

A Study on Structural Analysis for Stability Evaluation According to Design Parameters of a Fire Ladder Vehicle (소방 고가사다리차의 설계 변수에 따른 안정성 평가를 위한 구조해석 연구)

  • Jung, Hoon;Kim, Cheol-Jung;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.64-72
    • /
    • 2020
  • In this study, a stability analysis was conducted through finite element analysis (FEA) of a simplified model of a fire ladder truck by changing the ascending angle, turning angle, and boundary conditions between the outrigger and the ground. The results of the analysis showed that decreasing the angle of the ladder car increases the moment due to the ladder weight, decreasing the safety factor despite being under the same load conditions. In the case of a rotating radius, the stability was found to vary depending on the boundary conditions. A comparative analysis in the future with these results and the experimental values from the actual fire ladder truck may determine the most appropriate boundary conditions based on the analysis program. It is expected to predict the risk of damage and rollover by assessing the stability of aerial ladder vehicles under different conditions.

Changing Factors of Employee Satisfaction with Working Conditions: An Analysis of the Korean Working Conditions Survey

  • Lee, Changhun;Park, Sunyoung
    • Safety and Health at Work
    • /
    • v.12 no.3
    • /
    • pp.324-338
    • /
    • 2021
  • Background: We hypothesized that the growing demand of Korean workers for work-life balance would change the factors influencing job satisfaction. We sought to verify our hypothesis by conducting a conjoint analysis based on the Korean Working Conditions Survey (KWCS). Methods: We analyzed the raw data of the KWCS, conducted by the Occupational Safety and Health Research Institute from 2006 to 2017. To complete the analysis, we counted on a conjoint model of analysis, typically used in the analysis of customer satisfaction. The dependent variable was the satisfaction of workers with their working conditions, and the independent variables were the job quality indicators identified by Eurofound. Results: The factors that have the greatest impact on working conditions satisfaction are summarized as follows: "physical environment" for the first wave, "adverse social behavior" for the second wave, "occupational status" for the third and fourth waves, and "management quality" for the fifth wave. "Earnings" were not a major factor in determining employee job satisfaction, and the relative importance index is decreasing. Conclusion: According to the results of the analysis of the tendencies of Korean workers, the factors that affect the satisfaction with the working conditions have changed over time. It is crucial to identify factors that affect working conditions to assure the health and productivity of workers. The results of this study demonstrate that policymakers and employers are required to attentively consider human relations and social environment at work to improve working conditions in the future.

Numerical analysis of Consolidation Behavior under Various Drainage Conditions (배수조건에 따른 압밀 거동의 수치적 분석)

  • Oh, Sang-Ho;Cho, Wan-Jei;Yune, Chan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1194-1199
    • /
    • 2010
  • Systematic finite element analyses on consolidation were performed with various drainage conditions. Numerical analyses were performed using SAGE CRISP2D, a commercial numerical analysis program for the conventional geotechnical engineering practice. For the input properties of the numerical analyses, incremental loading oedometer tests were performed on reconstituted kaolinite samples. Numerical analyses were performed with various drainage conditions such as vertical, radially inward and outward drainage conditions. For the case of radially inward drainage conditions, a series of numerical analyses were performed with varying the diameter of vertical drains. As a result, the lateral deformation and void ratio variation occurred during consolidation for the radially inward or outward drainage conditions. And the variations of the lateral deformation and void ratio did not fully disappear even after the completion of the consolidation and induced the spatial variations of the soil properties. Keywords : finite element analysis of consolidation, various drainage conditions, lateral deformation, spatial variation of soil properties.

  • PDF

Analysis of Relations between Ice Accretion Shapes and Ambient Conditions by Employing Self-Organization Maps and Analysis of Variance (자가조직도와 분산분석을 활용한 결빙 형상과 외기 조건의 관계 분석)

  • Son, Chan-Kyu;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.689-701
    • /
    • 2011
  • The relations between ambient conditions and ice accretion shapes are quantitatively analyzed by employing self-organization maps and analysis of variance. Liquid water contents(LWC), mean volumetric droplet diameter(MVD), ambient temperature and free-stream velocity are chosen as ambient conditions which change ice accretion shapes. The parameters of ice accretion shape are selected as maximum thickness, icing limits, ice heading, and ice accretion area. Qualitative analysis was conducted by employing self-organization maps which show the qualitative relations between ice shapes and ambient conditions. The quantitative results of analysis of variance yield intensity of ambient conditions to the parameters of ice accretion shapes.

Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.359-367
    • /
    • 2017
  • In this work, transient heat transfer analysis of functionally graded (FG) carbon nanotube reinforced nanocomposite (CNTRC) cylinders with various essential and natural boundary conditions is investigated by a mesh-free method. The cylinders are subjected to thermal flux, convection environments and constant temperature faces. The material properties of the nanocomposite are estimated by an extended micro mechanical model in volume fraction form. The distribution of carbon nanotube (CNT) has a linear variation along the radial direction of axisymmetric cylinder. In the mesh-free analysis, moving least squares shape functions are used for approximation of temperature field in the weak form of heat transform equation and the transformation method is used for the imposition of essential boundary conditions. Newmark method is applied for solution time depended problem. The effects of CNT distribution pattern and volume fraction, cylinder thickness and boundary conditions are investigated on the transient temperature field of the nanocomposite cylinders.

Free vibration analysis of FGP nanobeams with classical and non-classical boundary conditions using State-space approach

  • Tlidji, Youcef;Benferhat, Rabia;Daouadji, Tahar Hassaine;Tounsi, Abdelouahed;Trinh, L.Cong
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.453-463
    • /
    • 2022
  • This paper aims to investigate the vibration analysis of functionally graded porous (FGP) beams using State-space approach with several classical and non-classical boundary conditions. The materials properties of the porous FG beams are considered to have even and uneven distributions profiles along the thickness direction. The equation of motion for FGP beams with various boundary conditions is obtained through Hamilton's principle. State-space approach is used to obtain the governing equation of porous FG beam. The comparison of the results of this study with those in the literature validates the present analysis. The effects of span-to-depth ratio (L/h), of distribution shape of porosity and others parameters on the dynamic behavior of the beams are described. The results show that the boundary conditions, the geometry of the beams and the distribution shape of porosity affect the fundamental frequencies of the beams.

Numerical Analysis about Optimal Conditions of GDICI Engine Operation using Intake Preheating (흡기가열을 이용한 가솔린압축착화 엔진의 최적구동조건에 관한 수치적 연구)

  • Choi, Mingi;Cha, Junepyo;Kwon, Seokjoo;Park, Sungwook
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.105-106
    • /
    • 2012
  • This study is numerical analysis about optimal conditions of GDICI (gasoline direct injection compression ignition) engine operation using intake preheating. Numerical modeling was performed by using the KIVA-3V Release2 code integrated Chemkin chemistry solver II. For validation of numerical model, experiments were performed on a single-cylinder engine. Throughout the numerical simulations under variable conditions, the ranges of optimal conditions were found.

  • PDF

Evaluation of Boundary Conditions for Structural Analysis of Wheel Bearing Units (Wheel Bearing Unit의 구조해석을 위한 경계조건 설정에 관한 연구)

  • 김기훈;유영면;임종순;현준수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.230-237
    • /
    • 2000
  • The wheel bearing in vehicles has been improved to unit module by joining a bearing to a hub in order to achieve weight reduction and easy assembly. Currently, the contact force between a raceway and balls of a bearing is applied as the external force in order to analyse the structure of the unit type bearings. In this paper, simplified boundary conditions are discussed for structure analysis of wheel bearing unit. From the procedure, the contact conditions of balls and race in wheel bearing unit are considered as equivalent non-linear spring elements. The end node of a spring element is constrained in displacement. And the external force of boundary conditions is applied at the contact point between tire and road. For the evaluation of this analysis, its results for the force of spring elements are compared with contact forces of calculated results. and also maximum equivalent stresses of analysis are compared with results of test at the flange of inner ring. The analysis results with proposed boundary conditions are more accurate than results from analysis which is generally used.

  • PDF

Study on Precision Cold Forging of helical Gear (헬리컬 기어의 정밀 냉간 단조에 대한 연구)

  • 박용복;양동열
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.384-392
    • /
    • 1999
  • In metal forming, there are problems with recurrent geometric characteristics without explicitly prescibed boundary conditions. In such problems, so-called recurrent boundary conditions must be introduced. In this paper, as a practical application of the proposed method, the precision cold forging of a helical gear has been simulated by a three-dimensional rigid-plastic finite element method and compared with the experiment. The application of recurrent boundary conditions to helical gear forging analysis is proved to be effective and valid. the elastic stress analysis of the die for helical gear forging has been calculated by using the nodal force at the final stage obtained from the rigid-plastic finite element analysis. In order to obtain more precise gear products, the elastic analysis of the die after release of punch and the elastic spring-back analysis of product after ejection have been performed, and the final dimension of the computational product has been in good agreement with that of the experimental product.

  • PDF