• Title/Summary/Keyword: Analog optical transmitter

Search Result 23, Processing Time 0.046 seconds

Analog Optical Transmitter Implementation for Improving Linearity and Stabilization of Optical Power (광출력의 선형성 및 안정화 향상을 위한 아날로그 광송신기 구현)

  • 권윤구;상명희;김창봉;최신호
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.909-912
    • /
    • 1999
  • This paper describes realized APC and pre-equalizer circuit, and their operation principle and test results. In analog optical transmitter, constant lasing power control, free of signal clipping and linearity are important considerations. We examined pre-equalizer and APC(Automatic Power Control) circuit to improve the analog optical transmitter performance.

  • PDF

Broadband Analog Optical Transmitter using Feedforward Compensation Circuit (피드포워드 보상회로를 적용한 광대역 광송신기의 특성)

  • Jang Joon-Woo;Choi Woon-Kyung;Choi Young-Wan;Moon Yon-Tae
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.15-18
    • /
    • 2006
  • We have proposed a broadband analog feedforward optical transmitter using a wideband $180^{\circ}$ hybrid coupler instead of conventional frequency-sensitive phase shifter with the narrow bandwidth property using a wideband $180^{\circ}$ hybrid coupler, the wide-band linearization technique enhances the linearity of the feedforward optical transmitter. In two-tone cases, the $3^{rd}-IMD$ products was enhanced more than 10 dB in 385 MHz range(1.375$\sim$l.76 GHz).

  • PDF

60 GHz analog optic transmitter module for radio-over-fiber link (Radio-over-Fiber 링크를 위한 60 GHz 아날로그 광 송신기 모듈)

  • Jeong, Yong-Deok;Choe, Gwang-Seong;Gang, Yeong-Sik;Sim, Jae-Sik;Kim, Seong-Bok;Kim, Je-Ha
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.07a
    • /
    • pp.363-364
    • /
    • 2006
  • We developed 60 GHz analog optical transmitter modules for radio-over-fiber (RoF). They were consisted of an electroabsorption modulator (EAM), impedance matching circuit, and amplifier. The characteristics of fabricated modules were investigated by measuring the signal-to-noise ratio and the noise figure of the 60 GHz RoF link.

  • PDF

Control signal transmission with optical fiber

  • Wu, Yuying;Ikeda, Hiroaki;Yoshida, Hirofumi;Shinohara, Shigenobu;Tsuchiya, Etsuo;Nishimura, Ken-Ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1112-1115
    • /
    • 1990
  • Described is a new control signal transmission system which utilizes an optical fiber to transmit 2-bit control signals from the transmitter to receiver. In the transmitter the DC series control voltages are converted into the multiple frequency signals by voltage controlled oscillator (VCO). The multiple frequency signals can easily be transmitted by optical fiber. In the receiver the multiple frequency signals can be detected by analog or digital circuits and then be converted into 2-state control signals which can be used for a variety of applications.

  • PDF

Enhancement of ACPR and Noise level of Analog Optical Transmitter by Feedforward Compensation (피드포워드 보상회로를 적용한 아날로그 광 송신기의 ACPR과 잡음 레벨 개선)

  • Lee, Joon-Jae;Park, Sang-Hyun;Yun, Young-Seol;Choi, Young-Wan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.149-153
    • /
    • 2005
  • The optical fiber micro-cellular system requires the high linearity that determines the quality and capacity of system. Hence, there is a need for improving the linearity in mobile communication system. In order to compensate dispersion-induced signal distortion, we fabricated the optical feedforward transmitter. The compared 3rd-IMD was enhanced by 38 dB for two-tone case and the Adjacent Channel Power Ratio was enhanced by 20 dB for W-CDMA 1 carrier and by 16 dB for W-CDMA 3 carriers. Also, the induced noise level was reduced.

  • PDF

Broadband Optical Transmitter using Feedforward Compensation Circuit (피드포워드 보상회로를 이용한 광대역 광송신기)

  • Yun, Young-Seol;Lee, Joon-Jae;Moon, Yon-Tae;Kim, Do-Gyun;Choi, Young-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • Linearity is the one of the most important features for analog-optic transmission system. In our research, the available bandwidth for the feed-forward compensation circuit is enhanced by using a 180 hybrid coupler in the circuit. The bandwidth having the decreased 3rd-order intermodulation distortion(IMD3) over 10 dB is extended over 200 MHz with the center frequency of 1.6 GHz. We performed an efficient bandwith measurement for the feed-forward compensation system, which uses the network analyzer instead of the traditional measuring system that uses two RF signal generators and the spectrum analyzer. We identify the usefulness of this method from experimental results. In this study, we used cheap digital-purpose laser diodes for economical aspect, which proves the efficiency of the proposed analog system. The spurious-free dynamic range is improved about 6 dB/Hz.

Simulation of IMD3 induced CIR for analog optical transmission systems (아날로그 광 전송 시스템에서의 IMD3에 의한 CIR 시뮬레이션)

  • Jang, Seung-Hyun;Lee, Chul-Soo;Seol, Dong-Min;Jung, Eui-Suk;Kim, Byoung-Whi
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.475-477
    • /
    • 2005
  • We simulated 3rd order intermodulation distortion (IMD3) induced Carrier-to-Intermodulation Ratio (CIR) of laser diodes over a wide range of optical modulation index, and compared the results with commercial IMD3 induced CIR specification such as Composite Triple Beat (CTB) of DFB laser transmitter for CATV networks. It shows that the simulation results are in good agreement with the CATV CTB specification within 3dB margin. The results can be used to predict IMD3 induced CIR performance for various analog optical transmission systems with given optical modulation index and the number of transmission channels.

  • PDF

Implementation of the Burst Mode Fiber Optic Transmitter by Digital Temperature Compensation Architecture (디지털 온도보상에 의한 버스트 모드 광송신기의 구현)

  • Kang, Ho-Yong;Chai, Sang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.12-17
    • /
    • 2009
  • We have implement어 a bust mode optical transmitter using digital temperature compensation architecture with a microprocessor. Instead of previous analog real time technique, we used digital sampling and holding technique for the temperature compensation in order to get stable high speed data transmission of the laser diode. This digital temperature compensation technique should be complemented the previous analog method with accuracy and effectiveness in the over Gb/s transmitting application.

A Study on Temperature Compensation of Burst Mode Fiber Optic Transmitter using Digital Architecture (버스트 모드 광송신기의 디지털 방식에 의한 온도보상에 관한 연구)

  • Chai, Sang-Hoon;Kim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.36-42
    • /
    • 2007
  • In this paper, we have studied temperature compensation architecture for a bust mode optical transmitter to convert the electric burst mode date signal to a optical one through the laser diode. In order to get stable high speed data transmission, we used digital sampling technique with a microprocessor for the temperature compensation of the laser diode, not the previous real time analog technique. Though the digital automatic power control circuit should be complemented the previous analog one with accuracy and effectiveness. So the digital technique will be more effective in further future in development for the over Gb/s transmitting speed.

Fabrication of Feedforward Optical Transmitter for WLAN and Design of CMOS Circuit for Integration (피드포워드 보상기법을 이용한 2.4 GHz 대역용 FP-LD 광송신기 제작 및 송신기 집적화를 위한 CMOS 회로 설계)

  • Jang, Jun-Woo;Moon, Yon-Tae;Kim, Do-Kyun;Choi, Young-Wan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.15-18
    • /
    • 2007
  • RoF 링크 시스템을 적용한 무선 근거리 통신망(IEEE 802.11b/g)의 중심 주파수 대역인 2.4 GHz에서 저가의 Febry-Perot 레이저 다이오드를 이용한 피드포워드 광송신기를 제작 및 측정 하였다. 제작된 피드포워드 광송신기의 측정 결과는 2.4 GHz에서 주신호의 간격이 10 MHz이고 크기가 -4 dBm인 입력 신호에서 피드포워드 보상기법을 적용하기 전보다 3차 상호 변조 왜곡 신호가 22.9 dB 개선되었다. 제작된 피드포워드 광송신기의 전자소자의 사양을 바탕으로 송신기 집적을 위한 RFIC회로(감쇄기, 증폭기)를 0.18 ${\mu}m$ 공정을 이용하여 설계하였다.

  • PDF