• Title/Summary/Keyword: Anaerobic oxidation

Search Result 147, Processing Time 0.023 seconds

A Study on the Characteristics of Livestock Manure Treatment Facility in Korea (국내 가축분뇨 처리시설 형태별 특성조사 분석)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Khan, Modabber Ahmed;Han, Duk-Woo;Kwag, Jung-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.4
    • /
    • pp.28-44
    • /
    • 2014
  • Due to development of the national economy growth, livestock goods consumption has rapidly increased over the past 30 years. It has led livestock breeders to increase their livestock numbers. An increased number of livestock have consequently resulted in an increasing animal feces generation. According to the agricultural statistics provided by the Bureau of Statistics, livestock manure amounts to 47,235 thousand tons in 2013. To treat livestock manure, various types of treatment facilities like composting, liquid fertilization, purification, and anaerobic digestion facilities are being applied. In composting facility, there are four kinds of agitation system: escalator, paddle, screw and rotary type. In case of liquid fertilization process, there are two types of system: aeration and anoxic type. There are about 8,000 liquid fertilization facilities for treatment livestock manure in Korea. For purification of livestock manure, the treatment process is divided by three steps: Solid/Liquid separation process, Secondary purification process and advanced oxidation process. About 21 thousand tons of livestock manure was treated by anaerobic digestion facility in 2012. In every type of facility for livestock manure treatment, it is very important to choose the optimal deodorization equipment for the livestock manure treatment facility. In this study, the investigation has been carried out for six years to analyse the characteristics of livestock manure treatment facilities and related technique of Korea.

Identification of Anaerobic Thermophilic Thermococcus Dominant in Enrichment Cultures from a Hydrothermal Vent Sediment of Tofua Arc (Tofua Arc의 열수구환경으로부터 호열성 혐기성 고세균(Thermococcus)의 농화배양 및 동정)

  • Cha, In-Tae;Kim, So-Jeong;Kim, Jong-Geol;Park, Soo-Je;Jung, Man-Young;Ju, Se-Jong;Kwon, Kae-Kyoung;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.48 no.1
    • /
    • pp.42-47
    • /
    • 2012
  • Hydrothermal vents (HTV) provide special environments for evolution of lives independent on solar energy. HTV samples were gained from Tofua arc trench in Tonga, South Pacific. We investigated archaeal diversity enriched using combinations of various electron donors (yeast extract and $H_2$) and electron acceptors [Iron (III), elemental sulfur ($S^0$) and nitrate. PCR amplification was performed to detect archaeal 16S rRNA genes after the cultures were incubated $65^{\circ}C$ and $80^{\circ}C$ for 2 weeks. The cultures showing archaeal growth were transferred using the dilution-to-extinction method. 16S rRNA gene PCR-Denaturing Gradient Gel Electrophoresis was used to identify the enriched archaea in the highest dilutions where archaeal growth was observed. Most of cultured archaea belonged to genus of Thermococcus (T. alcaliphilius, T. litoralis, T. celer, T. barossii, T. thoreducens, T. coalescens) with 98-99% 16S rRNA gene similarities. Interestingly, archaeal growth was observed in the cultures with Iron (III) and nitrate as an electron acceptor. It was supposed that archaea might use the elemental sulfur generated from oxidation of the reducing agent, sulfide. To cultivate diverse archaea excluding Thermococcus, it would be required to use other reducing agents instead of sulfide.

Effect of Nitrate on Iron Reduction and Phosphorus Release in Flooded Paddy Soil (논토양에서 질산 이온이 철의 환원과 인의 용출에 미치는 영향)

  • Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.165-170
    • /
    • 2009
  • The increase in P availability to rice under flooded soil conditions involves the reductive dissolution of iron phosphate and iron (hydr)oxide phosphate. However, since $NO_3^-$ is a more favourable electron acceptor in anaerobic soils than Fe, high$NO_3^-$ loads function as a redox buffer limiting the reduction of Fe. The effect of adding $NO_3^-$ on Fe reduction and P release in paddy soil was investigated. Pot experiment was conducted where $NO_3^-$ was added to flooded soil and changes of redox potential and $Fe_2^+$, $NO_3^-$ and $PO_4^{3-}$ concentrations in soil solution at 10 cm depth were monitored as a function of time. Redox potential decreased with time to -96 mV, but it was temporarily poised at about 330${\sim}$360 mV when $NO_3^-$ was present. Nitrate addition to soil led to reduced release of $Fe_2^+$ and prevented the solubilization of P. Phosphate in pore water began to rise soon after incubation and reached final concentrations about 0.82 mg P/L in the soil without $NO_3^-$ addition. But, in the soil with $NO_3^-$ addition, $PO_4^{3-}$ in pore water was maintained in the range of 0.2${\sim}$0.3 mg P/L. The duration of inhibition in $Fe_2^+$ release was closely related to the presence of $NO_3^-$, and the timing of $PO_4^{3-}$ release was inversely related to the $NO_3^-$ concentration in soil solution. The results suggest that preferential use of $NO_3^-$ as an electron acceptor in anaerobic soil condition can strongly limit Fe reduction and P solubilization.

Correlation between Characteristics of SOD in Coastal Sewage and Predictive Factor (연안 저질 SOD의 특성과 유발 영향인자에 대한 상관관계)

  • Kim, Beom-Geun;Khirul, Md Akhte;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.596-604
    • /
    • 2019
  • This study conducted a sediment culture experiment to investigate the effects of sediment oxygen demand (SOD) and environmental factors on sediment and water quality. We installed a leaching tank in the laboratory, cultured it for 20 days, and analyzed the relationship between P and Fe in the sediment. As a result, the dissolved oxygen of the water layer decreased with time, while the oxidation-reduction potential of the sediment progressed in the negative direction to form an anaerobic reducing environment. The SOD was measured to be 0.05 mg/g at the initial stage of cultivation and increased to 0.09 mg/g on the 20th day, indicating the tendency of increasing consumption of oxygen by the sediment. The change is likely to have caused by oxygen consumption from biological-SOD, which is the decomposition of organic matter accumulated on the sediment surface due to the increase of chl-a, and chemical-SOD consumed when the metal-reducing product produced by the reduction reaction is reoxidized. The correlation between SOD and causality for sediment-extracted sediments was positive for Ex-P and Org-P and negative for Fe-P. The analysis of the microbial community in the sediment on the 20th day showed that anaerobic iron-reducing bacteria (FeRB) were the dominant species. Therefore, when the phosphate bonded to the iron oxide is separated by the reduction reaction, the phosphate is eluted into the water to increase the primary productivity. The reduced substance is reoxidized and contributes to the oxygen consumption of the sediment. The results of this study would be useful as the reference information to improve oxygen resin.

Trichloroethylene Removal Using Sulfate Reducing Bacteria and Ferric Iron (황환원균과 3가철을 이용한 Trichloroethylene의 제거에 관한 연구)

  • Hwang, Ki-Chul;Min, Jee-Eun;Park, In-Sun;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.24-31
    • /
    • 2008
  • Sulfate reducing bacteria (SRB) is universally distributed in the sediment, especially in marine environment. SRB reduce sulfate as electron acceptor to hydrogen sulfide in anaerobic condition. Hydrogen sulfide is reducing agent enhancing the reduction of the organic and inorganic compounds. With SRB, therefore, the degradability of organic contaminants is expected to be enhanced. Ferrous iron reduced from the ferric iron which is mainly present in sediment also renders chlorinated organic compounds to be reduced state. The objectives of this study are: 1) to investigate the reduction of TCE by hydrogen sulfide generated by tht growth of SRB, 2) to estimate the reduction of TCE by ferrous iron generated due to oxidation of hydrogen sulfide, and 3) to illuminate the interaction between SRB and ferrous iron. Mixed bacteria was cultivated from the sludge of the sewage treatment plant. Increasing hydrogen sulfide and decreasing sulfate confirmed the existence of SRB in mixed culture. Although hydrogen sulfide lonely could reduce TCE, the concentration of hydrogen sulfide produced by SRB was not sufficient to reduce TCE directly. With hematite as ferric iron, hydrogen sulfide produced by SRB was consumed to reduce ferric ion to ferrous ion and ferrous iron produced by hydrogen sulfide oxidation decreased the concentration of TCE. Tests with seawater confirmed that the activity of SRB was dependent on the carbon source concentration.

The Effect of Aquatic Macrophytes on the Biogeochemistry of Wetland Sediments (습지 식물이 퇴적물의 생지화학적 반응에 미치는 영향)

  • Choi, Jung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.918-924
    • /
    • 2008
  • This research investigates the influences of the presence of aquatic macrophytes on the changes of biogeochemistry in the sediments through the comparative analysis of porewater and sediments. From the in situ measurements, elevated SO$_4{^{2-}}$ concentrations were observed in the rhizosphere during the growing season, which was resulted from the oxidation of reduced sulfide in the sediments by the oxygen release from the plant roots. There was sufficient AVS in the sediments to induce observed SO$_4{^{2-}}$ concentrations. The amount of oxygen in the oxidation of AVS to produce observed SO$_4{^{2-}}$ concentrations is 0.85 g/m$^2$ day which is relevant to the results of other researches. The AVS concentrations in the vegetated sediments increased with the depth whereas there is higher mass of AVS in the surface of the non-vegetated sediments. This shows that evapotranspiration induces the transportation of SO$_4{^{2-}}$ in the surface water into the anaerobic sediments. In addition, the elevated organic content caused by the presence of plants increased $\beta$-glucosidase activities which play an important role in the carbon cycle of the sediments.

Nitrogen Removal Characteristic of Excreta Wastewater Using SBR and MBR Processes (SBR 및 MBR 공정을 이용한 분뇨폐수에서의 질소제거 특성)

  • Jung, Jin-Hee;Yoon, Young-Nae;Lee, Seul-Kee;Han, Young-Rip;Lee, Seung-Chul;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1485-1491
    • /
    • 2015
  • There are two treatment processes that are currently applied to ships are the biological treatment process using the activated sludge and the electrochemical treatment. However, neither of them are able to remove both nitrogen and phosphorus due to their limited ability to remove organic matters, which are main causes of the red tide. This study was conducted to identify the characteristics of nitrogen removal factors from manure wastewater by replacing the final settling tank in SBR (Sequencing Batch Reactor) process and applying immersion type hollow fiber membrane. SBR process is known to have an advantage of the least land requirement in special environment such as in ship and the immersion type hollow fiber membrane is more stable in water quality change. As the result, the average in the cases of DO (Dissolved Oxygen) is 2.9(0. 6~3.9) mg/L which was determined to be the denitrifying microorganism activity in anaerobic conditions. The average in the cases of ORP (Oxidation Reduction Potential) is 98.4~237.3 mV which was determined to be the termination of nitrification since the inflection point was formed on the ORP curve due to decrease in the stirring treatment after the aeration, same as in the cases of DO. Little or no variation in the pH was determined to have positive effect on the nitrification. T-N (Total Nitrigen) removal efficiencies of the finally treated water were 71.4%, 72.3% and 66.5% in relatively average figures, thus was not a distinct prominence. In being applied in ships in the future, the operating conditions and structure improvements are deemed necessary since the MEPC (Marine Environment Protection Committee). 227(64) ship sewage nitrogen is less than the standard of 20 Qi/Qe mg/L or the removal rate of 70%.

Combined Effects of Modified Atmosphere Packaging and Organic Acid Salts (Sodium Acetate and Calcium Lactate) on the Quality and Shelf-life of Hanwoo Ground Beef Patties

  • Muhlisin, Muhlisin;Kang, Sun-Moon;Choi, Won-Hee;Lee, Keun-Taik;Cheong, Sung-Hee;Lee, Sung-Ki
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.685-694
    • /
    • 2010
  • The present study investigated the combined effects of modified atmosphere packaging (MAP) and organic acid salts on the quality and shelf-life of Hanwoo ground beef patties. The ground beef containing 500 ppm of ascorbic acid was prepared with air-packaging (Air-P), high oxygen-MAP (70% $O_2$+30% $CO_2$/OxyMAP), and nitrogen-MAP (100% $N_2$/NitroMAP), in combination with organic acid salts (1500 ppm of sodium acetate and 500 ppm of calcium lactate). The samples were stored for 11 d at $5^{\circ}C$. The pH value of ground beef patties decreased during storage in all the treatments. The ground beef patties with organic acid salts showed relatively higher level of pH during storage compared with non-added patties (p<0.05). Lipid oxidation was accelerated in OxyMAP while it was delayed in NitroMAP treated with organic acid salts. Nitro-MAP treated with organic acid salts was effective in stabilizing the color characteristics of lightness (CIE $L^*$) and redness (CIE $a^*$) during storage. Oxygen content in MAP was shown to be a more important factor affecting color stability and lipid oxidation of ground beef than organic acid salts. The aerobic and anaerobic bacterial counts were reduced both in OxyMAP and NitroMAP (p<0.05), and the lactic acid bacteria was inhibited by Oxy-MAP (p<0.05). Coliform bacteria decreased during storage as pH value was decreased in all treatments. According to the sensory evaluation, the ground beef patties in NitroMAP showed the best quality among all treatments during storage. Therefore, Hanwoo ground beef patties added with sodium acetate and calcium lactate and packed with NitroMAP showed better quality characteristics than other treatments. This packaging method is recommended and could be utilized for packaging hanwoo ground beef patties for improving quality and extending shelf-life.

Effect of Cooking Time and Storage Temperature on the Quality of Home-Made Retort Pouch Packed Chuncheon Dakgalbi

  • Muhlisin, Muhlisin;Kim, Dong Soo;Song, Yeong Rae;Cho, Young Jae;Kim, Cheon-Jei;An, Byoung-Ki;Kang, Chang-Won;Lee, Sung Ki
    • Food Science of Animal Resources
    • /
    • v.33 no.6
    • /
    • pp.737-743
    • /
    • 2013
  • The aim of this research is to evaluate the effects of cooking time and storage temperature on the quality of home-made retort pouch packed Chuncheon Dakgalbi. The leg meat of broiler is being cut into cubes and is mixed with the Dakgalbi sauce and vegetables. Around 200 g of Chuncheon Dakgalbi is being stuffed into a retort pouch and then vacuumed. The retort pouch packed Chuncheon Dakgalbi is subjected to cooking (autoclaving) at $110^{\circ}C$ and 0.75 Kgf for 10, 20 or 30 min and then transferred to the chilling room at $2^{\circ}C$ for rapid cooling procedures. Subsequently, the samples are stored at $4^{\circ}C$ or $25^{\circ}C$ for 4 wk. According to results of sensory evaluation, the highest sensory scores were found in Chuncheon Dakgalbi which was cooked for 30 min (p<0.05). Prolonged cooking time tends to decrease the pH, CIE $L^*$ and CIE $a^*$ levels, and slightly promote the lipid oxidation and protein deterioration. The Chuncheon Dakgalbi being cooked for 10 min promoted the lipid oxidation and protein deterioration during storage at $25^{\circ}C$. Moreover, the total aerobic and anaerobic bacteria in Chuncheon Dakgalbi being cooked for 10 min started to grow after 3 wk of storage at $25^{\circ}C$. Cooking (autoclaving) at $110^{\circ}C$ for 30 min is able to maintain the quality and shelf-life of retort pouch packed Chuncheon Dakgalbion the market.

The effectiveness of step feeding strategies in sequencing batch reactor for a single-stage deammonification of high strength ammonia wastewater

  • Choi, Wonyoung;Yu, Jaecheul;Kim, Jeongmi;Jeong, Soyeon;Direstiyani, Lucky Caesar;Lee, Taeho
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.79-85
    • /
    • 2020
  • A single-stage deammonification with a sequencing batch reactor (SBR) that simultaneous nitritation, anaerobic ammonia oxidation (anammox), and denitrification (SNAD) occur in one reactor has been widely applied for sidestream of wastewater treatment plant. For the stable and well-balanced SNAD, a feeding strategy of influent wastewater is one of the most important operating factors in the single-stage deammonification SBR. In this study, single-stage deammonification SBR (working volume 30L) was operated to treat a high-strength ammonium wastewater (1200 mg NH4+-N/L) with different feeding strategies (single feeding and nine-step feeding) under the condition without COD. Each cycle of the step feeding involved 6 sub-cycles consisted of aerobic and anoxic periods for partial nitritation (PN) and anammox, respectively. Contrary to unstable performance in the single feeding, the step feeding showed better deammonification performance (0.565 kg-N/m3/day). Under the condition with COD, however, the nitrogen removal rate (NRR) decreased to 0.403 kg-N/m3/day when the Nine-step feeding strategies had an additional denitrification period before sub-cycles for PN and anammox. The NRR was recovered to 0.518 kg-N/m3/day by introducing an enhanced multiple-step feeding strategy. The strategy had 50 cycles consisted of feed, denitrification, PN, and anammox, instead of repeated sub-cycles for PN and anammox. The multiple-step feeding strategy without sub-cycle showed the most stable and excellent deammonification performance: high nitrogen removal efficiency (98.6%), COD removal rate (0.131 kg-COD/m3/day), and COD removal efficiency (78.8%). This seemed to be caused by that the elimination of the sub-cycles might reduce COD oxidation during aerobic condition but increase the COD utilization for denitrification period. In addition, among various sensor values, the ORP pattern appeared to be applicable to monitor and control each reaction step for deammonification in the multiple-step feeding strategy without sub-cycle. Further study to optimize the number of multiple-step feeding is still needed but these results show that the multiple-step feeding strategy can contribute to a well-balanced SNAD for deammonification when treating high-strength ammonium wastewater with COD in the single-stage deammonification SBR.