• 제목/요약/키워드: Anaerobic granule

검색결과 28건 처리시간 0.021초

PHYSICOCHEMICAL CHARACTERIZATION OF UASB GRANULAR SLUDGE WITH DIFFERENT SIZE DISTRIBUTIONS

  • 안영희;송영진;이유진;박성훈
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.172-181
    • /
    • 2001
  • Upflow anaerobic sludge blanket (UASB) system employs granular sludge to treat various wastewaters including landfill leachate. CH$_4$ production of the granules determines overall performance of a UASB reactor. Sludge granules are developed by self-granulation of microorganisms and dynamic balance between granule growth and decay results in coexistence of granules with different sizes in the reactor. In this study, granules taken from a laboratory-scale UASB reactor were classified into 4 groups based on their diameters and their Physicochemical characteristics we were investigated. Each group was analyzed for settling ability, specific methanogenic activity (SMA), and elemental content. Settling ability was proportional to granule diameter. suggesting effective detainment of larger granules in the reactor. When acetate or glucose was used as a substrate, all groups showed relatively slight difference in SMA. However SMA with a volatile fatty acid mixture showed significant increase with granule diameter, suggesting better establishment of syntrophic relationship in larger granules. Larger granules showed higher value of SMA upon environmental changes (i.e., PH, temperature, or toxicant concentration). Comparative analysis of elemental contents showed that content (dry weight %) of most tested elements (iron, calcium, phosphorus, zinc, nickel. and manganese) deceased with granule diameter, suggesting importance of these elements for initial granulation. Taken together, this study verified experimentally that Physicochemical Properties of granules are related to granule size distributions. Overall results of physicochemical characterization supports that larger.

  • PDF

혐기성 암모늄 산화균의 활성에 대한 식종미생물, 히드라진 및 아질산성 질소 농도의 영향 (Effects of Seeding Microorganisms, Hydrazine, and Nitrite Concentration on the Anammox Activity)

  • 정진영;강신현;김영오;정윤철
    • 한국물환경학회지
    • /
    • 제21권5호
    • /
    • pp.477-483
    • /
    • 2005
  • Anammox (Anaerobic Ammonium Oxidation) bacteria is recently discovered microorganism which can oxidize ammonium to nitrogen gas in the presence of nitrite under anaerobic conditions. The anammox process can save an energy for nitrification and need not require a carbon source for denitrification, however, the start-up periods takes a long time more than several months due to the long doubling time (approximately 11 days). In order to find the effects of seeding microorganisms, hydrazine, and nitrite concentration on the enhancement of the anammox activity, five kinds of microorganisms were selected. Among the several kinds of seeding microorganisms, the granule from acclimated microorganisms treating high concentration of ammonia nitrogen (A-1) and sludge from piggery wastewater treatment plant (A-2) were found to have a high anammox activity. In the case of A-1, the maximum nitrogen conversion rate represented 0.4 mg N/L-hr, and the amount of nitrite utilization was high compared to those of other seeding microorganisms. The A-4 represented a higher nitrogen conversion rate to 0.7 mg N/L-hr although the ammonium concentration in the serum bottle was high as 200 mg/L. Meanwhile, the anaerobic granule from UASB reactor treating distillery wastewater showed a low anammox activity due to the denitrification by the remained carbon sources in the granule. Hydrazine, intermediate product in anammox reaction, enhanced the anammox activity by representing 1.4 times of nitrogen gas was produced in the test bottle than that of control, when 0.4 mM of $N_2H_4$ was added to serum bottle which contains 5 mM of nitrite. The high concentration of nitrite (10 mM) resulted in the decrease of the anammox activity by showing lower production of nitrogen gas compared to that of 5 mM addition of nitrite concentration. As a result of FISH (Florescence In-Situ Hybridization) experiment, the Amx820 probe showed a more than 13% of anammox bacteria in a granule (A-1).

Morphological characteristics and nutrient removal efficiency of granular PAO and DPAO SBRs operating at different temperatures

  • Geumhee Yun;Jongbeom Kwon;Sunhwa Park;Young Kim;Kyungjin Han
    • Membrane and Water Treatment
    • /
    • 제15권1호
    • /
    • pp.1-9
    • /
    • 2024
  • Biological nutrient removal is gaining increasing attention in wastewater treatment plants; however, it is adversely affected by low temperatures. This study examined temperature effects on nutrient removal and morphological stability of the granular and denitrifying phosphorus accumulating organisms (PAO and DPAO, respectively) using sequencing batch reactors (SBRs) at 5, 10, and 20 ℃. Lab-scale SBRs were continuously operated using anaerobic-anoxic and anaerobic-oxic cycles to develop the PAO and DPAO granules for 230 d. Sludge granulation in the two SBRs was observed after approximately 200 d. The average removal efficiency of soluble chemical oxygen demand (SCOD) and PO43--P remained >90% throughout, even when the temperature dropped to 5 ℃. The average removal efficiency of NO3--N remained >80% consistently in DPAO SBR. However, nitrification drastically decreased at 10 ℃. Hence, the removal efficiency of NH4+-N was decreased from 99.1% to 54.5% in PAO SBR. Owing to the increased oxygen penetration depth at low temperatures, the influence on nitrification rates was limited. The granule in DPAO and PAO SBR was observed to be unstable and disintegrated at 10 ℃. In conclusion, morphological characteristics showed that changed conversion rates at low temperatures in aerobic granular sludge altered both nutrient removal efficiencies and granule formation.

Hybrid type 반응조에서의 혐기성 슬러지의 탈질(I): 초산을 기질로 사용한 경우 (Denitrification of Anaerobic Sludge in Hybrid type Anaerobic Reactor(I): Acetate as Substrate)

  • 신항식;김구용;이채영
    • 상하수도학회지
    • /
    • 제13권4호
    • /
    • pp.35-44
    • /
    • 1999
  • In this study, it was attempted to remove nitrate and carbon in a single-stage reactor using acetate as substrate. Hybrid type upflow sludge baffled filter reactor was adopted using anaerobic sludge. Sludge bed in the bottom of reactor was intended to remove carbon and nitrate by denitrification and methanogenesis. And floating media in the upper part of reactor were intended to remove remaining carbon which was not removed due to the inhibition of nitrogen oxide on methane producing bacteria. The reactor removed over 96% of COD and most of nitrate with volumetric loading rate of $4.0kgCOD/m^3{\cdot}day$, hydraulic retention time of 24hr, 4,000mgCOD/L, and $266mgNO_3-N/L$. Nitrate in anaerobic sludge was converted to nitrogen gas(denitrification) or ammonia (ammonification) according to pH of influent, COD removal efficiency was easily affected by the change of volumetric loading rates and nitrate concentration. And when influent pH was about 4.7, most nitrate changed to ammonia while when influent pH was about 6.8~7.0, most nitrate denitrified independent of $COD/NO_3-N$ ratio. Most granules were gray and a few were black. In gray-colored granule, black inner side was covered with gray substance and SEM illustrated Methanoccoci type microorganisms which were compact spherical shape. Anaerobic filter removed residual COD effectively which was left in sludge bed due to the inhibition of nitrogen oxide.

  • PDF

UASB 반응조를 이용한 매립지 침출수의 혐기성 처리 (Anaerobic Treatment of Landfill Leachate Using a Upflow Anaerobic Sludge Blanket Reactor)

  • 이채영
    • 유기물자원화
    • /
    • 제14권4호
    • /
    • pp.151-160
    • /
    • 2006
  • 침출수의 혐기성 처리시 오염물질 거동과 미생물 특성을 평가하기 위하여 10개월간 실험을 수행하였다. 상향류 혐기성 슬러지 블랭킷 (UASB) 반응조의 경우 최대 유기물 부하 $20kgCOD/m^3.d$까지 약 90%의 COD 제거율을 나타내었다. 높은 유기물 부하 ($18-20kgCOD/m^3.d$)에서는 프로피온산의 농도가 상대적으로 증가하여 프로피온산의 초산으로의 전환이 율속단계로 나타났다. UASB 반응조를 이용한 침출수 처리는 높은 유기물 제거능에도 불구하고 입상슬러지와 반응조 내부 등의 무기물 축적으로 인한 운전상의 문제가 발생하였다. 입상슬러지 내 주된 무기물의 성분은 칼슘화합물로 나타났다. 본 연구에서는 비메탄 활성도의 급격한 감소는 발생되지 않았으나 무기물 축적으로 인한 운전상의 문제를 저감하기 위해서는 무기물 제거를 위한 전처리 공정의 도입이 필요할 것으로 판단된다.

  • PDF

Characterizations of Denitrifying Polyphosphate-accumulating Bacterium Paracoccus sp. Strain YKP-9

  • Lee, Han-Woong;Park, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권12호
    • /
    • pp.1958-1965
    • /
    • 2008
  • A denitrifying polyphosphate-accumulating bacterium (YKP-9) was isolated from activated sludge of a 5-stage biological nutrient removal process with step feed system. This organism was a Gram-negative, coccus-shaped, facultative aerobic chemoorganotroph. It had a respiratory type of metabolism with oxygen, nitrate, and nitrite as terminal electron acceptors. The 16S rRNA gene sequence of strain YKP-9 was most similar to the 16S rRNA gene sequence of Paracoccus sp. OL18 (AY312056) (similarity level, 97%). Denitrifying polyphosphate accumulation by strain YKP-9 was examined under anaerobic-anoxic and anaerobic-oxic batch conditions. It was able to use external carbon sources for polyhydroxyalkanoates(PHA) synthesis and to release phosphate under anaerobic condition. It accumulated polyphosphate and grew a little on energy provided by external carbon sources under anoxic condition, but did neither accumulate polyphosphate nor grow in the absence of external carbon sources under anoxic condition. Cells with intracellular PHA cannot accumulate polyphosphate in the absence of external carbon sources under anoxic condition. Under oxic condition, it grew but could not accumulate polyphosphate with external carbon sources. Based on the results from this study, strain YKP-9 is a new-type denitrifying polyphosphate-accumulating bacterium that accumulates polyphosphate only under anoxic condition, with nitrate and nitrite as the electron acceptors in the presence of external carbon sources.

입상슬러지의 동력학적 인자 산정 (Evaluation of Biological Kinetic Parameters in the Granular Sludge)

  • 이재관;양병수
    • 한국환경과학회지
    • /
    • 제4권2호
    • /
    • pp.201-214
    • /
    • 1995
  • Design approach of upflow Anaerobic Sludge Blanket(UASB) process based on the biological kinetic parameters are known to be very difficult since the characteristics of the granular slut비e depends on the type of wastewater and size distribution of the granular sludge also depends on the upflow velocity in the UASB reactors. Furthermore, industrial wastewater containing toxic substances has been treated by UASB process without the clear knowledge of toxic effects on the granular slut형e. Hence, the present research was aimed on the intensive evaluation of biological kinetic parameters of the granular sludge in UASB reactor with and without toxic substance of 2, 4-dichlorophenol in order to present the basic design measures for UASB process design. The results could be summarized as follows. The biological kinetic parameters(k and Ks) considerably varied with the granular size of the sludge. Generally, 연e k and ks values of the granular sludge increased with the particle size of the granule. The biological kinetic parameters(k and Ks) of the granular sludge obtained from batch test were not applicable to design purpose of UASB process due to substrate diffusional limitation into the granular sludge in the completely mixed UASB reactors. The toxic effects on k and Ks greatly varied with the granular sixte. And as the toxicant concentration increased, the k value decreased while the Ks value increased. Inhibition constant(hi) for k with the toxicant of 2, 4-dichlorophenol varied from 0.5 to 2.3 depending on the granular sizes while the inhibition constant(Ki) for Ks varied from 20.7 to 80.1, showing the mixed inhibition.

  • PDF

Hybrid Anaerobic Reactor를 이용한 음식물쓰레기의 혐기성처리 및 에너지 회수에 관한 연구 (A Study on Anaerobic Treatment and Energy Recovery Technology of Food Waste by Using Hybrid Anaerobic Reactor)

  • 윤영봉;박진영;주진영;김명호
    • 환경위생공학
    • /
    • 제20권1호
    • /
    • pp.64-75
    • /
    • 2005
  • 2005.1.1부터 직 매립 금지 이후 음식물쓰레기를 처리하는 데 있어 많은 사회적 문제가 대두되고 있다. 그리고 우리나라의 경우 전국 음식물쓰레기 배출량이 11,398ton/day('03)으로 상당히 많은 양이 배출되고 있으며, 주로 음식물쓰레기는 매립, 소각, 사료나 퇴비로 재활용하는 방법으로 처리하고 일부 음식물쓰레기는 혐기성으로 처리 하는 방법이 사용되어 왔다. 이 중 혐기성 처리는 유용한 메탄가스를 발생하여 에너지로 사용가능 하다. 본 연구에서는 pH가 낮고 많은 양의 유기물과 고형물을 함유하고 있어 1단 혐기성 처리시 운전에 영향을 줄 것으로 예상되는 음식물쓰레기의 1단 혐기성처리 가능성 및 혐기성 처리시 메탄가스를 이용하여 에너지로서 사용 가능성에 대해 알아보고자 연구를 실시 하였다. 처리시간과 비용을 절감하기 위해 산형성조를 거치지 않고 반 고형물의 유입시 부유물로 인해 발생될 수 있는 plugging와 channeling 현상을 방지하기 위해 USAB(up flow anaerobic sludge blank)의 장점과 낮은 pH의 음식물 쓰레기의 유입시 미생물에 미칠 수 있는 충격을 최소화 할 수 있는 AE(anaerobic filter)장점을 조합하여 환형유공 지지막속에 그레뉼을 충진시킨 Hybrid Anaerobic Reactor(HAR)를 제작하여 실험을 실시하였다. 본 연구에 앞서 음식물쓰레기의 혐기성 생분해도 실험을 실시하여 혐기성처리가능성을 검토하였으며 실험결과 첨가된 VS량당 총 누적메탄량은 $0.471(m^{3}/\cal{kg}\;VS)$로 원소 분석하여 얻은 이론 메탄발생량 $0.58(m^{3}/\cal{kg}\;VS)$$81.2\%$를 나타냈으며 유기물 분해속도 상수는 $0.18(d^{-1})$로 혐기성 처리가 가능하다는 사전 연구 결론을 도출하였다. 연구 결과, 낮은 pH인 음식물 쓰레기를 처리시 산발효조를 거치지 않고도 혐기성 처리가 가능하였으며, 높은 농도로 존재하는 유기물 및 고형물의 처리효율은 매우 양호했고 또한 인의 제거율도 높게 나타났다. 연구결과를 토대로 전국 음식물쓰레기(11,398ton/d)를 대상으로 에너지를 산출하면 Braun에너지 환산계수 $5.97kwh/m3(60\%\;CH_{4})$를 적용할 때 우리나라의 1일 음식물에서 발생되는 에너지 총량은 6,727MWh로 환산될 수 있으며 이는 유기물(COD)당 발생되는 메탄 가스량을 에너지원으로 사용하기에 충분히 가능하다는 것을 확인할 수 있었다. 이상의 결과에 의하면 고농도의 유기물이 함유된 음식물쓰레기는 Hybrid Anaerobic Reactor (HAR)를 이용하여 HRT 30일 정도에서 충분히 직접 혐기성처리가 가능하며, 이때 발생된 $CH_{4}$를 회수하여 이용하면 대체에너지원으로 활용 가치가 높은 것으로 판단된다.

SHARON/ANAMMOX 결합공정에서 슬러지의 입상화와 특성 (Granulation and Characteristics of Sludges in the Combined SHARON/ANAMMOX Processes)

  • 황인수;민경석
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.300-307
    • /
    • 2006
  • The combined SHARON (Single reactor system for High ammonium Removal Over Nitrite)-ANAMMOX (Anaerobic ammonium oxidation) reactor were operated in mesophilic condition ($35^{\circ}C$). In this study, microbial granulation and characteristics of SHARON and ANAMMOX sludges were investigated using settling test, Scanning Electron Microscopy (SEM) and Fluorescence In Situ Hybridization (FISH). In SHARON reactor, Aerobic granulation with diameter of 1.5~2.5 mm was accomplished but aerobic granulation was weaker than anaerobic granular sludge. Initial seed sludge of ANAMMOX reactor was used as attached media for biofilm growth. ANAMMOX sludge was more compact and rounder rather than seed sludge. Though ANAMMOX sludge has high activity, it has lower settling ability than the seed granule. The color of ANAMMOX sludge was changed from dark to redish brown granular with diameter of 1~2 mm. In FISH of ANAMMOX sludge, high fraction of Candidatus B. stuttgartiensis which paid great role of nitrogen conversion was detected. Also, FISH results reveals that ANAMMOX bacteria inhabit at inner parts near surface, having advantages in utilization of substrates and protection from oxygen inhibition.

Divergence of Granular Sludges and Microbial Communities in Two Types of Anaerobic Reactors Treating Different Wastewaters

  • Qin, Xianchao;Li, Chunjie;Gao, Yueshu;Zhang, Zhenjia;Zhang, Xiaojun
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.633-644
    • /
    • 2019
  • An advanced anaerobic expanded granular sludge bed (AnaEG) and an internal circulation (IC) reactor, which were adopted to treat starch processing wastewater (SPW) and ethanol processing wastewater (EPW), were comprehensively analyzed to determine the key factors that affected the granules and microbial communities in the bioreactors. The granule size of $900{\mu}m$ in the AnaEG reactor was smaller than that in the IC reactor, and the internal and external morphological structures of the granular sludge were also significantly different between the two types of reactors. The biodiversity, which was higher in the AnaEG reactor, was mainly affected by reactor type. However, the specific microbial community structure was determined by the type of wastewater. Furthermore, the dominant methanogens of EPW were mainly Methanosaeta and Methanobacterium, but only Methanosaeta was a major constituent in SPW. Compared with the IC reactor, characteristics common to the AnaEG reactor were smaller granules, higher biodiversity and larger proportion of unknown species. The comparison of characteristics between these two reactors not only aids in understanding the novel AnaEG reactor type, but also elucidates the effects of reactor type and wastewater type on the microbial community and sludge structure. This information would be helpful in the application of the novel AnaEG reactor.