• Title/Summary/Keyword: Anabaena flos-aquae

Search Result 21, Processing Time 0.027 seconds

Measurement of Cell Death Constant in Anabaena flos-aquae (Cyanophyceae) by the Molecular Probe (Anabaena flos-aquae 에서의 세포사멸계수(Cell Death Constant)의 측정)

  • 오인혜
    • The Korean Journal of Ecology
    • /
    • v.20 no.3
    • /
    • pp.169-173
    • /
    • 1997
  • The measurement of cell death constant in Anabaena flos-aquae was tested by the Live/Dead BacLight Viability kit(Molecular Probes Co., Seatle, WA). When the Live/Dead BacLight Viability kit was applied to Anabaena flos-aquae, the cells with intact cell membranes(live cells) stained fluorescent green, while the cell with damaged membranes(dead cells) stained fluorescent red and the background remained virtually nonfluorescent. The rations of live : dead cells in the cell suspension were controlled artifically and Live/Dead BacLight Viability kit was applied to them. The ratios of green:red fluorescent cells in the cell suspension were the same as those of live : dead cells controlled artifically. It was also approved by the fluorescence emission. The cell death constant was measured in the P-limited Anabaena flos-aquae chemostal culture in the N-fixing and $KNO_3-supplied$ conditions. The culture in N-fixing chemostat had a dead cell proportion of 1.2% at the growth rate of 0.7/day and increased to 2.6% at the growth rate of 0.3/day. The cell death constant of N-fixing culture was 0.008/day.There was a same trend in the $KNO_3-supplied$ chemostat culture. The proportion of dead cell was 1.6% of dead cell proportion at the growth rate of 0.7/day and increased to 4.3% at the growth rate of 0.3/day.

  • PDF

The Analysis of Cyanobacterial Neurotoxins by High-Performance Liquid Chromatography-Mass Spectrometry

  • Jung, Jong-Mun;Lee, You-Jung;Park, Hong-Ki;Jung, Eun-Young;Joo, Gea-Jae
    • ALGAE
    • /
    • v.18 no.3
    • /
    • pp.233-238
    • /
    • 2003
  • Cyanobacteria were dominant from June to September in the Nakdong River and the Hoedong Reservoir. Microcystis aeruginosa was dominant from June to September; Anabaena flos-aquae from June to August and Aphanizomenon flos-aquae from July to August. Cyanobacterial neurotoxins, Anatoxin-a and saxitoxin were analyzed by electrospray ionization-mass spectrometry with strains of Aphanizomenon flos-aquae NIES-81 and Anabaena flosaquae NIER-10002. Anatoxin-a was not detected from the cultured Anabaena flos-aquae nor from the wild samples. Low levels of saxitoxin were detected in the cultured Aphanizomenon flos-aquae however, those of field samples were below the detection limit.

Antialgal Effect of a Novel Polysaccharolytic Sinorhizobium kostiense AFK-13 on Anabaena flos-aquae Causing Water Bloom

  • Kim, Jeong-Dong;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1613-1621
    • /
    • 2006
  • Isolation and identification of algal lytic bacteria were carried out. Nine strains of algal lytic bacteria were isolated by the double-layer method using Anabaena flos-aquae as a sole nutrient. The isolate, AFK-13, showing the highest algal lytic activity was identified as Sinorhizobium kostiense based on the l6S rDNA sequence. The algal lytic experiments of the culture supernatants of AFK-13 demonstrated that the bacterial cell growth reached a maximum at 36-h culture, but the supernatant of 72-h culture exhibited the highest activity. Components among the extracellular products in the crude enzyme of the supernatant from S. kostiense AFK-13 culture were responsible for degradation of cell walls of Anabaena flos-aquae. Algal lytic assay tests of the culture supernatants suggest that the main substances for algal lytic activity could be proteinaceous. The activity of glucosidase was observed highly by polysaccharolytic analysis using the crude enzyme from S. kostiense AFK-13, whereas activities of galactosidase, mannosidase, rhamnosidase, and arabinosidase were also detected in low levels. The molecular weights (MW) of ${\alpha}-\;and\;{\beta}$-glucosidases were estimated to be approximately 50-100 kDa by the ultrafiltration method.

Toxicity Effects of Copper on the Physiological Responses of Anabaena flos-aquae (Cyanophyceae) (구리독성이 Anabaena flos-aquae의 생리적 변화에 미치는 영향)

  • Ryu, Ji-Won;Choi, Eun-Joo;Rhie, Ki-Tae
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.2
    • /
    • pp.101-112
    • /
    • 2008
  • Effects of various concentrations of copper on growth change of blue-greenalgae Anabaena flos-aquae were studied. There was significant differences among cultures treated with various concentrations of copper in growth of algae with parameters of cell numbers, specific growth rate (SGR) and chlorophyll contents. Algal growth and SGR were inhibited on by effect of various concentrations of copper more than without copper (ANOVA, F=34.69 p<0.001, F=114.89, p<0.001). The SGRs of various concentrations of copper in media were higher than without copper on 8 days after copper treated. The mean of chlorophyll contents was 1.978 ${\mu}g{\cdot}mL^{-1}$ and 1.648 ${\mu}g{\cdot}mL^{-1}$, respectively, while those of algae in culture without copper was 3.179 ${\mu}g{\cdot}mL^{-1}$ (ANOVA, F=153.74, p<0.001). The cellular morphology was different between media of which copper treated and without copper. The colony of algae in media which copper treated was shorter than without copper. Effects of various concentrations of copper on growth change of blue-green-algae Anabaena flos-aquae occured variety changes of parameters of cell numbers, specific growth rate (SGR), chlorophyll contents and cellular morphology on growth of algae.

Characterization of Two Algal Lytic Bacteria Associated with Management of the Cyanobacterium Anabaena flos-aquae

  • Kim, Jeong-Dong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.382-390
    • /
    • 2006
  • Various microorganisms were isolated from the surface waters and sediments of eutrophic lakes and reservoirs in Korea to enable an investigation of bacteria having algal lytic activities against Anabaena flos-aquae when water blooming occurs and to study enzyme profiles of algal lytic bacteria. Two bacterial strains, AFK-07 and AFK-13, were cultured, characterized and identified as Acinetobacter johnsonii and Sinorhizobium sp., respectively. The A. johnsonii AFK-07 exhibited a high level of degradatory activities against A. flos-aquae, and produced alginase, caseinase, lipase, fucodian hydrolase, and laminarinase. Moreover, many kinds of glycosidase, such as ${\beta}-galactosidase,\;{\beta}-glucosidase,\;{\beta}-glucosaminidase,\;and\; {\beta}-xylosidase$, which hydrolyzed ${\beta}-O-glycosidic$ bonds, were found in cell-free extracts of A. johnsonii AFK-07. Other glycosidases such as ${\alpha}-galactosidase,\;{\alpha}-N-Ac-galactosidase,\;{\alpha}-mannosidase,\; and\;{\alpha}-L-fucosidase$, which cleave ${\alpha}-O-glycosidic$ bonds, were not identified in AFK-07. In the Sinorhizobium sp. AFK-13, the enzymes alginase, amylase, proteinase (caseinase and gelatinase), carboxymethyl-cellulase (CMCase), laminarinase, and lipase were notable. No glycosidase was produced in the AFK-13 strain. Therefore, the enzyme system of A. johnsonii AFK-07 had a more complex mechanism in place to degrade the cyanobacteria cell walls than did the enzyme system of Sinorhizobium sp. AFK-13. The polysaccharides or the peptidoglycans of A. flos-aquae may be hydrolyzed and metabolized to a range of easily utilized monosaccharides or other low molecular weight organic substances by strain AFK-07 of. A. johnsonii, while the products of polysaccharide degradation or peptidoglycans were more likely to be utilized by Sinorhizobium sp. AFK-13. These bacterial interactions may offer an alternative effective approach to controlling the water choking effects of summer blooms affecting our lakes and reservoirs.

Purification and Characterization of Anabaena flos-aquae Phenylalanine Ammonia-Lyase as a Novel Approach for Myristicin Biotransformation

  • Arafa, Asmaa M.;Abdel-Ghany, Afaf E.;El-Dahmy, Samih I.;Abdelaziz, Sahar;El-Ayouty, Yassin;El-Sayed, Ashraf S.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.622-632
    • /
    • 2020
  • Phenylalanine ammonia-lyase (PAL) catalyzes the reversible deamination of phenylalanine to cinnamic acid and ammonia. Algae have been considered as biofactories for PAL production, however, biochemical characterization of PAL and its potency for myristicin biotransformation into MMDA (3-methoxy-4, 5-methylenedioxyamphetamine) has not been studied yet. Thus, PAL from Anabaena flos-aquae and Spirulina platensis has been purified, comparatively characterized and its affinity to transform myristicin was assessed. The specific activity of purified PAL from S. platensis (73.9 μmol/mg/min) and A. flos-aquae (30.5 μmol/mg/min) was increased by about 2.9 and 2.4 folds by gel-filtration comparing to their corresponding crude enzymes. Under denaturing-PAGE, a single proteineous band with a molecular mass of 64 kDa appeared for A. flos-aquae and S. platensis PAL. The biochemical properties of the purified PAL from both algal isolates were determined comparatively. The optimum temperature of S. platensis and A. flos-aquae PAL for forward or reverse activity was reported at 30℃, while the optimum pH for PAL enzyme isolated from A. flos-aquae was 8.9 for forward and reverse activities, and S. platensis PAL had maximum activities at pH 8.9 and 8 for forward and reverse reactions, respectively. Luckily, the purified PALs have the affinity to hydroaminate the myristicin to MMDA successfully in one step. Furthermore, a successful method for synthesis of MMDA from myristicin in two steps was also established. Gas chromatography-mass spectrometry (GC-MS) analysis was conducted to track the product formation.

Photosynthetic Characteristics of Anabaena flos-aquae Growing on Various Inorganic Nitrogen Sources (무기질소원의 종류에 따른 염조류 Anabaena flos-aquae 광합성의 특성)

  • 맹주선
    • Journal of Plant Biology
    • /
    • v.25 no.4
    • /
    • pp.153-160
    • /
    • 1982
  • The kinetics of $^{14}C$ fixation have been investigated in Anabaena flos-aquae growing on ${NH}_4+$,$NO_3-$ and $NO_2-N$ in batch cultures. Growth rate was highest with ${NH}_4+$, followed by $NO_2-$ and finally $NO_2$. The compensation intensity($I_0$) and the half-saturation irradiance($K_1$) with $K_1$ were higher than with other N sources, but the maximum C fixation rate($P_{max}$) was lower. The ($P_{max}$)/$K_1$ ratio, which is analogous to quantum efficiency at low irradiance ranges, was also lower with $N_2$. All these parameters except $K_1$ decrease with culture age, or decreasing growth rate. Since $^{14}C$ uptake measures net photosynthesis, the higher values of $I_0$ and $K_1$, and the low values of $P_{max}$/$K_1$ ratio with $N_2$ appear to be related to the high energy demand of $N_2$fixation. They may also be related to the lox maximum growth rate with $NO_2-N$.

  • PDF

Properties of Dissolved Organic Carbon (DOC) released by Three Species of Blue- green Algae (남조류에 의해 배출된 용존유기탄소의 특성)

  • Choi, Kwang-Soon;Imai, Akio;Kim, Bom-Chul;Matsushige, Kazuo
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.20-29
    • /
    • 2001
  • The amount, chemical composition and optical property of extracellular dissolved organic carbon (EOC) by phytoplankton were examined using axenic cultures of Microcystis aeruginosa, Anabaena flos-aquae, and Oscillatoria agardhii. The extracellular organic matter was categorized into five fractions (hydrophobic acids; AHSs, hydrophobic neutrals; HoNs, hydrophilic acids; HiAs, hydrophilic bases; HiBs, and hydrophilic neutrals; HiNs) using three adsorbent resins(XAD-8, cation, and anion). The release pattern and chemical composition of EOC varied with algal species and their growth phases. Percentage of extracellular release increased with age in all cultures. HiAs were the dominant component of EOC in all cultures, whereas the proportion of HiAs decreased with age in all cultures. In contrast, the proportions of HiBs and HiNs increased as cultures aged. In particular, the HiN fraction increased from 0% to 44% of EOC in M. aeruginosa and from 3.0% to 28% in A. flos-aquae, respectively. The proportion of AHSs was higher in the cultures of A. flos-aquae(7.5${\sim}$16%) and O. agardhii (8.7${\sim}$16%) than M. aeruginosa(0.2${\sim}$2.5%). The proportions of AHSs increased with culture age in M. aeruginosa and O. agardhii, but decreased in A. flos-aquae. The specific UV absorbance also varied among species; 1.9 Abs${\cdot}$cm$^{-1}$/mgC${\cdot}$L$^{-1}$ for M. aeruginosa, 3.7 Abs${\cdot}$cm$^{-1}$/mgC${\cdot}$L$^{-1}$ for A. flos-aquae, and 13.0 Abs${\cdot}$cm$^{-1}$/mgC${\cdot}$L^{-1}$ for O. agardhii. The results of this study indicates that DOC excreted by three blue-green algae differed with species and the growth phase.

  • PDF

Purification and Characterization of Extracellular $\beta$-Glucosidase from Sinorhizobium kostiense AFK-13 and Its Algal Lytic Effect on Anabaena flos-aquae

  • Kim, Jeong-Dong;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.745-752
    • /
    • 2007
  • A $\beta$-glucosidase from the algal lytic bacterium Sinorhizobium kostiense AFK-13, grown in complex media containing cellobiose, was purified to homogeneity by successive ammonium sulfate precipitation, and anion-exchange and gel-filtration chromatographies. The enzyme was shown to be a monomeric protein with an apparent molecular mass of 52 kDa and isoelectric point of approximately 5.4. It was optimally active at pH 6.0 and $40^{\circ}C$ and possessed a specific activity of 260.4 U/mg of protein against $4-nitrophenyl-\beta-D-glucopyranoside$(pNPG). A temperature-stability analysis demonstrated that the enzyme was unstable at $50^{\circ}C$ and above. The enzyme did not require divalent cations for activity, and its activity was significantly suppressed by $Hg^{+2}\;and\;Ag^+$, whereas sodium dodecyl sulfate(SDS) and Triton X-100 moderately inhibited the enzyme to under 70% of its initial activity. In an algal lytic activity analysis, the growth of cyanobacteria, such as Anabaena flos-aquae, A. cylindrica, A. macrospora, Oscillatoria sancta, and Microcystis aeruginosa, was strongly inhibited by a treatment of 20 ppm/disc or 30 ppm/disc concentration of the enzyme.