• Title/Summary/Keyword: Amyloid-beta

Search Result 436, Processing Time 0.022 seconds

β-Amyrin Ameliorates Alzheimer's Disease-Like Aberrant Synaptic Plasticity in the Mouse Hippocampus

  • Park, Hye Jin;Kwon, Huiyoung;Lee, Ji Hye;Cho, Eunbi;Lee, Young Choon;Moon, Minho;Jun, Mira;Kim, Dong Hyun;Jung, Ji Wook
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.74-82
    • /
    • 2020
  • Alzheimer's disease (AD) is a progressive and most frequently diagnosed neurodegenerative disorder. However, there is still no drug preventing the progress of this disorder. β-Amyrin, an ingredient of the surface wax of tomato fruit and dandelion coffee, is previously reported to ameliorate memory impairment induced by cholinergic dysfunction. Therefore, we tested whether β-amyrin can prevent AD-like pathology. β-Amyrin blocked amyloid β (Aβ)-induced long-term potentiation (LTP) impairment in the hippocampal slices. Moreover, β-amyrin improved Aβ-induced suppression of phosphatidylinositol-3-kinase (PI3K)/Akt signaling. LY294002, a PI3K inhibitor, blocked the effect of β-amyrin on Aβ-induced LTP impairment. In in vivo experiments, we observed that β-amyrin ameliorated object recognition memory deficit in Aβ-injected AD mice model. Moreover, neurogenesis impairments induced by Aβ was improved by β-amyrin treatment. Taken together, β-amyrin might be a good candidate of treatment or supplement for AD patients.

Improvements in Cognitive and Motor Function by a Nutrient Delivery System Containing Sialic Acid from Edible Bird's Nest (제비집 시알산 유래 영양전달체(Nutrient Delivery System)의 인지기능 및 운동기능 개선 효과)

  • Kim, Dong-Myong;Jung, Ju-Yeong;Lee, Hyung-Kon;Kwon, Yong-Seong;Baek, Jin-Hong;Han, In Suk
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.6
    • /
    • pp.614-623
    • /
    • 2020
  • The objective of this study was to produce a nutrient delivery system (NDS) using sialic acid extracted from edible bird's nest (EBN), which improves brain function in patients with Alzheimer's disease and Parkinson's disease, by affinity bead technology (ABT). The inhibitory activity of acetylcholinesterase (AChE) and pyramidal cells in the dentate gyrus of the hippocampus were analyzed to investigate the effect of a sialic acid NDS on Alzheimer's disease. Also, the effect of a sialic acid NDS on Parkinson's disease was evaluated by rota-rod test and pole test in an animal model. Among the groups treated with donepezil, EBN, and sialic acid NDS, the AChE activity was the lowest in the sialic acid NDS-treated group. The results of the hippocampus analysis of the rat model confirmed that the sialic acid NDS inhibited amyloid-beta accumulation depending upon the concentration. Also, the sialic acid NDS group showed more improvement in motor deterioration than the1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced group in both the rota-rod test and pole test. Therefore, the sialic acid NDS had an effect of protecting not only Alzheimer's disease by inhibiting AChE and amyloid-beta accumulation, but Parkinson's disease by preventing neurotoxicity induced by MPTP.

Effects of Corticosterone on Beta-Amyloid-Induced Cell Death in SH-SY5Y Cells

  • Bo Kyeong Do;Jung-Hee Jang;Gyu Hwan Park
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.77-83
    • /
    • 2024
  • Alzheimer's disease (AD) is a neurodegenerative disease characterized by neuronal cell death and memory impairment. Corticosterone (CORT) is a glucocorticoid hormone produced by the hypothalamic-pituitary-adrenal axis in response to a stressful condition. Excessive stress and high CORT levels are known to cause neurotoxicity and aggravate various diseases, whereas mild stress and low CORT levels exert beneficial actions under pathophysiological conditions. However, the effects of mild stress on AD have not been clearly elucidated yet. In this study, the effects of low (3 and 30 nM) CORT concentration on Aβ25-35-induced neurotoxicity in SH-SY5Y cells and underlying molecular mechanisms have been investigated. Cytotoxicity caused by Aβ25-35 was significantly inhibited by the low concentration of CORT treatment in the cells. Furthermore, CORT pretreatment significantly reduced Aβ25-35-mediated pro-apoptotic signals, such as increased Bim/Bcl-2 ratio and caspase-3 cleavage. Moreover, low concentration of CORT treatment inhibited the Aβ25-35-induced cyclooxygenase-2 and pro-inflammatory cytokine expressions, including tumor necrosis factor-α and interleukin-1β. Aβ25-35 resulted in intracellular accumulation of reactive oxygen species and lipid peroxidation, which were effectively reduced by the low CORT concentration. As a molecular mechanism, low CORT concentration activated the nuclear factor-erythroid 2-related factor 2, a redox-sensitive transcription factor mediating cellular defense and upregulating the expression of antioxidant enzymes, such as NAD(P)H:quinone oxidoreductase, glutamylcysteine synthetase, and manganese superoxide dismutase. These findings suggest that low CORT concentration exerts protective actions against Aβ25-35-induced neurotoxicity and might be used to treat and/or prevent AD.

Characterization and β-secretase Inhibitory Activity of Water-soluble Polysaccharides Isolated from Phellinus linteus Fruiting Body (상황버섯 자실체로부터 분리된 수용성 다당류의 특성 분석 및 이의 베타 시크리타아제 활성 저해효과)

  • Jo, Hang Soo;Choi, Doo Jin;Chung, Mi Ja;Park, Jae Kweon;Park, Yong Il
    • The Korean Journal of Mycology
    • /
    • v.40 no.4
    • /
    • pp.229-234
    • /
    • 2012
  • A key molecule in the pathogenesis of Alzheimer's disease (AD) is the ${\beta}$-amyloid peptide ($A{\beta}$) generated by ${\beta}$-secretase activity, an aspartic protease. This study was designed to evaluate inhibitory effect of the high-molecular weight water-soluble polysaccharides (Et-P) isolated and purified from Phellinus linteus fruiting body on ${\beta}$-secretase activity. The Et-P was purified from the hot water extract of Phellinus linteus fruiting body mainly by 75% ethanol precipitation and DEAE-Cellulose column chromatography. From the DEAE-Cellulose chromato-gram and molecular weight analysis, the Et-P was shown to be a mixture of three polysaccharides with molecular mass of 1,629, 1,294, and 21 kDa, respectively. The monosaccharide composition of Et-P was determined to be glu-cose, galactose, and mannose as major sugars, glucose being the most prominent one (48% in mole percentage). The elemental analysis and FT-IR analysis suggested that Et-P is typical polysaccharides having at least partially ${\beta}$-linkages and possible existing as complex with phenolic compounds. The laminarinase digestion and HPAEC-PAD analysis suggested that Et-P is a variant of beta-(1,3)-glucans. The Et-P showed DPPH radical scavenging activity and, especially, a significant inhibitory activity on ${\beta}$-secreatase activity (48% inhibitin at 100 ${\mu}g/mL$), suggesting that they may inhibit the formation of $A{\beta}$ which is the major causative of Alzheimer's disease. The results of this study suggest that the water soluble polysaccharides of Phellinus linteus fruiting body can be a potent material for the development of preventive or therapeutic agents for AD.

Studies on the Treatment and Prevention of Dementia by Green-Tea extracts (녹차(綠茶)추출물에 의한 치매 치료 및 예방에 관한 연구)

  • Lim, Jong-Soon
    • Journal of Haehwa Medicine
    • /
    • v.12 no.1
    • /
    • pp.11-26
    • /
    • 2003
  • Alzheimer's disease (AD) is characterized by amyloid deposition and associated loss of neunons in brain regions involved in learning and memory processes. Several causes of evidence support that the congnitive disturbance is closed associated with the deficit of cerebral acetylcholine neurotransmission, and the effect of carboxyl terminal 105 amino acid fragment (CT105) of the amyloid precursor protein (APP) on the gene expression of proinflammatory cytokines. We tested it on the scopolamine-induced amnesia model of the ICR mouse using the Morris water maze with repeated orally administration of 1st Green-Tea extract (200 mg/kg) and 2nd Green-Tea extract (200 mg/kg). The Green-Tea prevents impairment of learning and memory and neuronal loss in mouse models of cognitive disturbance and it demonstrated selectivity for inhibition of acetylcholinesterase (AChE). Furthermore, the repeated administration of Green-Tea, CT105-induced alzheimer's mouse model showed central cholinergic activity by ameliorates learning and memory impairment, and isolation of CD14 microglia showed significantly decreases intracellular release of the proinflammatory cytokines tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$ and reactive oxygen species (ROS). Because of its composite profile, oral therapeutic index and a prophylactic, Green-Tea is considered the better therapeutic candidate for the treatment of Alzheimer's disease.

  • PDF

Presenilin-2 mutation perturbs ryanodine receptor-mediated calcium homeostasis, caspase-3 activation and increases vulnerability of PC12 cells

  • Hwang, In-Young;Shin, Im-Chul;Hwang, Dae-Youn;Kim, Young-Kyu;Yang, Ki-Hwa;Ha, Tae-Yeol;Hong, Jin-Tae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.73-74
    • /
    • 2003
  • Familial form of Alzheimer's disease (FAD) is caused by mutations in presenilin-1 and presenilin-2 (PS2). PS1 and PS2 mutation are known to similar effects on the production of amyloid $\beta$ peptide (A$\beta$) and cause of cell death in the Alzheimer's brain. The importance of the alternation of calcium homeostasis in the neuronal cell death by PS1 mutation in a variety of experimental system has been demonstrated. (omitted)

  • PDF

Calcium Signal Dependent Cell Death by Presenilin-2 Mutation in PC12 Cells and in Cortical Neuron from Presenilin-2 Mutation Transgenic Mice

  • Lee, Sun-Young;Song, Youn-Sook;Hwang, Dae-Yeun;Kim, Young-Kyu;Yoon, Do-Young;Lim, Jong-Seok;Hong, Jin-Tae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.145-145
    • /
    • 2003
  • Familial form of Alzheimer's disease (FAD) is caused by mutations in presenilin-1 (PS-1) and presenilin-2 (PS-2). PS1 and PS2 mutation are known to similar effects on the production of amyloid ${\beta}$ peptide (A${\beta}$) and cause of neuronal cell death in the brain of patient of AD. The importance of the alternation of cellular calcium homeostasis in the neuronal cell death by PS1 mutation in a variety of experimental systems has been demonstrated.(omitted)

  • PDF

The Effects of Dichroa febrifuga(DIF) Extract on the Alzheimer's Disease Model (상산(常山)이 Alzheimer's Disease 병태(病態) 모델에 미치는 영향(影響))

  • Lee, Seung-Hee;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.16 no.1
    • /
    • pp.81-96
    • /
    • 2005
  • This experiment was designed to investigate the effect of Dichroa febrifuga(DIF) on the Alzheimer’s disease. The effects of DIF extract on $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ mRNA of THP-1 cell treated by $A{\beta}$ plus LPS and amyloid precursor proteins(APP), acetylcholinesterase(AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 cell treated by $A{\beta}$ plus $rIL-1{\beta}$ and AChE activity of PC-12 cell lysate treated by $A{\beta}$ plus $rIL-1{\beta}$ and behavior of memory deficit mice induced by scopolamine and mice glucose, uric acid, AChE activity of memory deficit rats induced by scopolamine were investigated, respectively. The results were summarized as follows ; 1. DIF extract suppressed APP, AChE, GFAP mRNA in PC-12 cell treated by $A{\beta}$. 2. DIF extract suppressed $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ mRNA in THP-1 cell treated by LPS. 3. DIF extract suppressed AChE activity in cell lysate of PC-12 cell treated by $A{\beta}$. 4. DIF extract increased glucose, decreased uric acid and AChE significantly in the serum of the memory deficit rats induced by scopolamine. 5. DIF extract group showed significantly inhibitory effect on the memory deficit of mice induced by scopolamine in the experiment of Morris water maze. According to the above results, it is suggested that DIF extract might be usefully applied for prevention and treatment of Alzheimer’s disease and memory deficit.

  • PDF

S-Allyl-L-cysteine, a Garlic Compound, Selectively Protects Cultured Neurons from ER Stress-induced Neuronal Death

  • Ito Yoshihisa
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2004.11a
    • /
    • pp.124-128
    • /
    • 2004
  • We have assessed amyloid ${\beta}-peptide$ $(A{\beta})-induced$ neurotoxicity in primary neurons and organotypic hippocampal slice cultures (OHC) in rat. Exposing cultured hippocampal and cerebellar granule neurons to $A{\beta}$ resulted in a decrease of MTT reduction, and in destruction of neuronal integrity. Treatment of these neurons with tunicamycin, an inhibitor of N-glycosylation in the endoplasmic reticulum (ER), also decreased MTT reduction in these neurons. S-allyl-L-cysteine (SAC), an active organosulfur compound in aged garlic extract, protected hippocampal but not cerebellar granule neurons against $A{\beta}$- or tunicamycin-induced toxicity. In the hippocampal neurons, protein expressions of casapse-12 and GRP 78 were significantly increased after $A{\beta}_{25-35}$ or tunicamycin treatment. The increase in the expression of caspase-12 was suppressed by simultaneously adding $1{\mu}M$ SAC in these neurons. In contrast, in the cerebellar granule neurons, the expression of caspase-12 was extremely lower than that in the hippocampal neurons, and an increase in the expression by $A{\beta}_{25-35}$ or tunicamycin was not detected. In OHC, ibotenic acid (IBO), a NMDA receptor agonist, induced concentration-dependent neuronal death. When $A{\beta}$ was combined with IBO, there was more intense cell death than with IBO alone. SAC protected neurons in the CA3 area and the dentate gyrus (DG) from the cell death induced by IBO in combination with $A{\beta}$, although there was no change in the CA1 area. Although protein expression of casapse-12 in the CA3 area and the DG was significantly increased after the simultaneous treatment of AI3 and IBO, no increase in the expression was observed in the CA1 area. These results suggest that SAC could protect against the neuronal cell death induced by the activation of caspase-12 in primary cultures and OHC. It is also suggested that multiple mechanisms may be involved in neuronal death induced by AI3 and AI3 in combination with IBO.

  • PDF

A Correlative Study on Aβ and CD95 Pathway Independent to Ca2+ Dependent Protease and Activation of Caspase Activation

  • Tuyet, Pham Thi Dieu
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.25-38
    • /
    • 2014
  • Amyloid-${\beta}$-peptide ($A{\beta}$) is important in the pathogenesis of Alzheimer's disease (AD). Calpain ($Ca^{2+}$-dependent protease) and caspase-8 (the initiating caspase for the extrinsic, receptor-mediated apoptosis pathway) have been implicated in $AD/A{\beta}$ toxicity. We found that $A{\beta}$ promoted degradation of calpastatin (the specific endogenous calpain inhibitor); calpastatin degradation was prevented by inhibitors of either calpain or caspase-8. The results implied a cross-talk between the two proteases and suggested that one protease was responsible for the activity of the other one. In neuron-like differentiated PC12 cells, calpain promotes active caspase-8 formation from procaspase-8 via the $A{\beta}$ and CD95 pathways, along with degradation of the procaspase-8 processing inhibitor caspase-8 (FLICE)-like inhibitory protein, short isoform (FLIPS). Inhibition of calpain (by pharmacological inhibitors and by overexpression of calpastatin) prevents the cleavage of procaspase-8 to mature, active caspase-8, and inhibits FLIPS degradation in the $A{\beta}$-treated and CD95-triggered cells. Increased cellular Ca2+ per se results in calpain activation but does not lead to caspase-8 activation or FLIPS degradation. The results suggest that procaspase-8 and FLIPS association with cell membrane receptor complexes is required for calpain-induced caspase-8 activation. The results presented here add to the understanding of the roles of calpain, caspase- 8, and CD95 pathway in $AD/A{\beta}$ toxicity. Calpain-promoted activation of caspase-8 may have implications for other types of CD95-induced cell damage, and for nonapoptotic functions of caspase-8. Inhibition of calpain may be useful for modulating certain caspase-8-dependent processes.