• Title/Summary/Keyword: Amyloid protein

Search Result 284, Processing Time 0.023 seconds

Comparison of serum amyloid A protein and C-reactive protein levels as inflammatory markers in periodontitis

  • Ardila, Carlos Martin;Guzman, Isabel Cristina
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.1
    • /
    • pp.14-22
    • /
    • 2015
  • Purpose: The purpose of this study was to compare serum amyloid A (SAA) protein levels with high-sensitive C-reactive protein (hs-CRP) levels as markers of systemic inflammation in patients with chronic periodontitis. The association of serum titers of antibodies to periodontal microbiota and SAA/hs-CRP levels in periodontitis patients was also studied. Methods: A total of 110 individuals were included in this study. Patients were assessed for levels of hs-CRP and SAA. Nonfasting blood samples were collected from participants at the time of clinical examination. The diagnosis of adipose tissue disorders was made according to previously defined criteria. To determine SAA levels, a sandwich enzyme-linked immunosorbent assay was utilized. Paper points were transferred to a sterile tube to obtain a pool of samples for polymerase chain reaction processing and the identification of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Tannerella forsythia. The serum level of IgG1 and IgG2 antibodies to P. gingivalis, A. actinomycetemcomitans, and T. forsythia was also determined. Results: SAA and hs-CRP levels were higher in periodontitis patients than in controls (P<0.05). In bivariate analysis, high levels of hs-CRP (>3 mg/L) and SAA (>10 mg/L) were significantly associated with chronic periodontitis (P=0.004). The Spearman correlation analysis between acute-phase proteins showed that SAA positively correlated with hs-CRP (r=0.218, P=0.02). In the adjusted model, chronic periodontitis was associated with high levels of SAA (odds ratio [OR], 5.5; 95% confidence interval [CI], 1.6-18.2; P=0.005) and elevated hs-CRP levels (OR, 6.1, 95% CI, 1.6-23.6; P=0.008). Increased levels of serum IgG2 antibodies to P. gingivalis were associated with high levels of SAA (OR, 3.6; 95% CI, 1.4-8.5; P=0.005) and high concentrations of hs-CRP (OR, 4.3; 95% CI, 1.9-9.8; P<0.001). Conclusions: SAA and hs-CRP concentrations in patients with chronic periodontitis are comparably elevated. High serum titers of antibodies to P. gingivalis and the presence of periodontal disease are independently related to high SAA and hs-CRP levels.

Acetylcholinesterase Inhibitory Activity and Protective Effect against Cytotoxicity of Perilla Seed Methanol Extract (들깨 메탄올 추출물의 acetylcholinesterase 억제활성 및 세포독성 보호효과)

  • Choi, Won-Hee;Um, Min-Young;Ahn, Ji-Yun;Kim, Sung-Ran;Kang, Myung-Hwa;Ha, Tae-Youl
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.1026-1031
    • /
    • 2004
  • Acetylcholinesterase inhibitory activity and protective effect against cytotoxicity of PC 12 cell induced by beta-amyloid protein and glutamate were examined in perilla seed methanol extract and its solvent fractions. Methanol extract of perilla seed showed dose-dependent acetylcholinesterase inhibitory activity, with n-butanol fraction showing strongest activity. Perilla seed methanol extract also decreased glutamate- and ${\beta}-amyloid$ protein $(A{\beta})-induced$ cytotoxicities of PC 12 cells dose-dependently. Formation of TBARS induced by $FeSO_{4^-}H_2O_2$ in rat brain was significantly reduced by perilla seed methanol extract, with strongest protective activity formation of TBARS shown in n-butanol fraction. Results suggest perilla seed methanol extract may attenuate actylcholinesterase activity and cytotoxicity induced by glutamate and ${\beta}-amyloid$ protein through suppression of oxidative stress.

Effects of Radicicol on the Metabolism of ${\beta}-Amyloid$ Precursor Protein in Neuroblastoma Cells (Radicicol이 신경세포에서 베타 아밀로이드 전구단백질의 대사에 미치는 영향)

  • Leem, Jae-Yoon;Lee, Ri-Hua;Lee, Kyung-A;Gong, Du-Gyun;Choi, Bu-Jin;Lee, Choong-Soo;Eun, Jae-Soon
    • YAKHAK HOEJI
    • /
    • v.51 no.4
    • /
    • pp.264-269
    • /
    • 2007
  • Alzheimer’s disease (AD) is characterized pathologically by the presence of intracellular neurofibrillary tangles and deposition of ${\beta}-amyloid $ (A ${\beta}$) peptides, which are generated by processing of amyloid precursor protein (APP). It is urgent to develop effective therapies for the treatment of AD, since our society rapidly accelerate aging. A${\beta}$ peptides have been believed to be neurotoxic and now are also considered to have effects on the mechanism of memory formation. In this study, effects of radicicol on the metabolism of APP were analyzed. Radicicol inhibited the secretion of A${\beta}$ from the Neuro2a cell line (APPswe cell) expressing APPswe. Beta-site APP cleaving enzyme (BACE) fluorescence resonance energy transfer (FRET) assay revealed that it inhibited BACE activity in a dose dependently manner. Immunoblotting study showed that it inhibited intracellular heat shock protein (HSP)90 and it increased the secretion of HSP90 from the APPswe cells. We suggest that radicicol inhibits APP metabolism and Ap generation by the means of HSP90 inhibitory mechanism and partially BACE inhibitory mechanism. This is the first report that radicicol inhibits the secretion of A${\beta}$ peptides from neuroblastoma cells.

Protective Effect of Sanguisorba officinalis L. Root on Amyloid ${\beta}$ Protein (25-35)-induced Neuronal Cell Damage in Cultured Rat Cortical Neuron

  • Ban, Ju-Yeon;Cho, Soon-Ock;Jeon, So-Young;Song, Kyung-Sik;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.219-226
    • /
    • 2005
  • Sanguisorbae radix (SR) from Sanguisorba officinalis L. (Losaceae) is widely used in Korea and China due to its various pharmacological activity. The present study aims to investigate the effect of the methanol extract of SR on amyloid ${\beta}$ Protein(25-35) $(A{\beta}\;(25-35))$, a synthetic 25-35 amyloid peptide, -induced neurotoxicity using cultured rat cortical neurons. SR, over a concentration range of $10-50\;{\mu}g/ml$, inhibited the $A{\beta}$ (25-35) $(10\;{\mu}M)-induced$ neuronal cell death, as assessed by a 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and the number of apoptotic nuclei, evidenced by Hoechst 33342 staining. Pretreatment of SR $(50\;{\mu}g/ml)$ inhibited $10\;{\mu}M\;A{\beta}$ (25-35)-induced} elevation of cytosolic calcium concentration $([Ca^{2+}]c)$, which was measured by a fluorescent dye, fluo-4 AM. SR $(10\;and\;50\;{\mu}g/ml)$ inhibited glutamate release into medium induced by $10\;{\mu}M\;A{\beta}(25-35)$, which was measured by HPLC, and generation of reactive oxygen species. These results suggest that SR prevents $A{\beta}$ (25-35)-induced neuronal cell damage in vitro.

Korean Mistletoe (Viscum album var. coloratum) Inhibits Amyloid β Protein (25-35)-induced Cultured Neuronal Cell Damage and Memory Impairment

  • Jang, Ji Yeon;Kim, Se-Yong;Song, Kyung-Sik;Seong, Yeon Hee
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.134-140
    • /
    • 2015
  • The present study aims to investigate the effect of methanol extract of Korean mistletoe (KM; Viscum album var. coloratum), on amyloid $\beta$ protein ($A\beta$) (25-35), a synthetic 25-35 amyloid peptide, -induced neurotoxicity in cultured rat cerebral cortical neurons and memory impairment in mice. Exposure of cultured neurons to $10{\mu}M$ $A\beta$ (25-35) for 24 h induced a neuronal cell death, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. KM (10, 30 and $50{\mu}g/ml$) significantly inhibited the $A\beta$ (25-35)-induced apoptotic neuronal death. KM ($50{\mu}g/ml$) inhibited 10 μM Aβ (25-35)-induced elevation of intracellular calcium concentration ([Ca2+]i), which was measured by a fluorescent dye, Fluo-4 AM. Glutamate release into medium and generation of reactive oxygen species (ROS) induced by $10{\mu}M$ $A\beta$ (25-35) were also inhibited by KM (10, 30 and $50{\mu}g/ml$). These results suggest that KM may mitigate the $A\beta$ (25-35)-induced neurotoxicity by interfering with the increase of [Ca2+]i and then inhibiting glutamate release and generation of ROS in cultured neurons. In addition, orally administered KM (25 and 50 mg/kg, 7 days) significantly prevented memory impairment induced by intracerebroventricular injection of $A\beta$ (25-35) (8 nmol). Taken together, it is suggested that anti-dementia effect of KM is due to its neuroprotective effect against $A\beta$ (25-35)-induced neurotoxicity and that KM may have therapeutic role in prevention of the progression of Alzheimer's disease.

Suppression of β-Secretase (BACE1) Activity and β-Amyloid Protein-Induced Neurotoxicity by Solvent Fractions from Petasites japonicus Leaves

  • Hong, Seung-Young;Park, In-Shik;Jun, Mi-Ra
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neuronal loss and extracellular senile plaques containing $\beta$-amyloid peptide (A$\beta$). The deposition of the A$\beta$ peptide following proteolytic processing of amyloid precursor protein (APP) by $\beta$-secretase (BACE1) and $\gamma$-secretase is a critical feature in the progression of AD. Among the plant extracts tested, the ethanol extract of Petasites japonicus leaves showed novel protective effect on B103 neuroblastoma cells against neurotoxicity induced by A$\beta$, as well as a strong suppressive effect on BACE1 activity. Ethanol extracts of P. japonicus leaves were sequentially extracted with methylene chloride, ethyl acetate and butanol and evaluated for potential to inhibit BACE1, as well as to suppress A$\beta$-induced neurotoxicity. Exposure to A$\beta$ significantly reduced cell viability and increased apoptotic cell death. However, pretreatment with ethyl acetate fraction of P. japonicus leaves prior to A$\beta$ (50 ${\mu}M$) significantly increased cell viability (p<0.01). In parallel, cell apoptosis triggered by A$\beta$ was also dramatically inhibited by ethyl acetate fraction of P. japonicus leaves. Moreover, the ethyl acetate fraction suppressed caspase-3 activity to the basal level at 30 ppm. Taken together, these results demonstrated that P. japonicus leaves appear to be a useful source for the inhibition and/or prevention of AD by suppression of BACE1 activity and attenuation of A$\beta$ induced neurocytotoxicity.

Protection of Amyloid ${\beta}$ Protein (25-35)-induced Neuronal Cell Damage by Methanol Extract of New Stem of Phyllostachys nigra Munro var. henonis Stapf in Cultured Rat Cortical Neuron

  • Ban, Ju-Yeon;Cho, Soon-Ock;Kwon, Soon-Ho;Kim, Jin-Bae;Song, Nak-Sul;Bae, Ki-Whan;Song, Kyung-Sik;Seng, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • Caulis Bambusae in Taenia is widely used in Korea and China due to its various pharmacological activity. The present study aims to investigate the effect of the methanol extract of Caulis Bambusae in Taenia (CB) from Phyllostachys nigra Munro var. henonis Stapf (Gramineae) on amyloid ${\beta}$ protein (25-35) $(A{\beta}\;(25-35))$, a synthetic 25-35 amyloid peptide, -induced neurotoxicity using cultured rat cortical neurons. CB, over a concentration range of $10-50{\mu}g/{\mu}l$, inhibited the $A{\beta}\;(25-35)\;(10\;{\mu}M)$-induced neuronal cell death, as assessed by a 3-[4,5-dimethyIthiazole-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and the number of apoptotic nuclei, evidenced by Hoechst 33342 staining. CB $(50\;{\mu}g/{\mu}l)$ inhibited glutamate release into medium induced by $10\;{\mu}M\;A{\beta}$, (25-35) which was measured by HPLC. Pretreatment of CB $(50\;{\mu}g/{\mu}l)$ inhibited $10{\mu}M\;A{\beta}$ (25-35)-induced elevation of cytosolic calcium concentration $([Ca^{2+}]_c)$, which was measured by a fluorescent dye, fluo-4 AM, and generation of reactive oxygen species. These results suggest that CB prevents $A{\beta}$ (25-35)-induced neuronal ell damage in vitro.

The Effects of anti-Alzheimer in pCT105-induced Neuroblastoma cell lines by Radix Polygalae and Rhizoma Acori Graminei mixture extract (원지와 석창포 혼합추출액의 pCT105로 유도된 신경세포암 세포주에 대한 항치매 효과)

  • Lee Sung Ryull;Kang Hyung Won;Kim Sang Tae;Lyu Yeoung Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.1037-1049
    • /
    • 2003
  • Numerous lines of evidence indicate that some of the neurotoxicity associated with Alzheimer's disease (AD) is due to proteolytic fragments of the amyloid precursor protein (APP). Most research has focused on the amyloid 6 (M). However, the possible role of other cleaved products of APP is less clear. Lately It has been reported that a recombinant carboxy-terminal 105 amino acid fragment (CT105) of APP induced strong nonselective inward currents in Xenopus oocyte. In a brain with Alzheimer's disease (AD), to investigate the roles of carboxyl-terminal fragment (CT105) of amyloid precursor protein (APP) in apoptosis processes possibly linked to neurodegeneration associated with AD, we examined the effects of the CT of APP with 105 amino acid residues (CT105) on the alteration of apoptosis triggers in neubroblastoma cells. We have investigated whether Radix Polygalae and Rhizoma Acori Graminei mixture extract (RP+RAG) inhibits CT105-induced apoptosis of neuroblastoma cells. We found that RP+RAG inhibits CT105-induced apoptosis in SK-N-SH cells. Treatment of the cells with RP+RAG inhibited CT105-induced DNA fragmentation and Tunel assay of nuclear chromatin and inhibited the caspase-3 expression in SK-N-SH cells. As the result of this study, In RP+RAG group, the apoptosis in the nervous system is inhibited, the repair against the degerneration of neuroblastoma cells by CT105 expression is promoted. These results indicate that RP+RAG possess strong inhibitory effect of apoptosis in the nervous system and repair effect against the degeneration of neuroblastoma cells by CT105 expression

Neuroprotective Effects of Acorus gramineus Soland. on Oxygen-Glucose Deprivation/Reoxygenation-Induced β-amyloid Production in SH-SY5Y Neuroblastoma Cells (허혈-재관류 유도 SH-SY5Y 모델에서 베타아밀로이드 생성에 미치는 석창포 추출물에 대한 뇌 신경보호 효과)

  • Su Young Shin;Jin-Woo Jeong;Chul Hwan Kim;Eun Jung Ahn;Seung Young Lee;Chang-Min Lee;Kyung-Min Choi
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.58-58
    • /
    • 2021
  • Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced β-amyloid (Aβ) generation and development of AD is not yet known. In this study, we investigated the protective effects of Acorus gramineus Soland. (AGS) on oxygen-glucose deprivation/reoxygenation (OGD/R)-induced A β production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with AGS significantly attenuated OGD/R-induced production of reactive oxygen species (ROS) and elevation of levels of malondialdehyde, nitrite (NO), prostaglandin E2 (PGE2), cytokines (TNF-α, IL-1β and IL-6) and glutathione, as well as superoxide dismutase activity. AGS also reduced OGD/R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, AGS reduced OGD/R-induced Aβ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that AGS may prevent neuronal cell damage from OGD/R-induced toxicity.

  • PDF

β-Sitosterol treatment attenuates cognitive deficits and prevents amyloid plaque deposition in amyloid protein precursor/presenilin 1 mice

  • Ye, Jian-Ya;Li, Li;Hao, Qing-Mao;Qin, Yong;Ma, Chang-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.39-46
    • /
    • 2020
  • Alzheimer's disease (AD) is the most common neurodegenerative disorder causing dementia worldwide, and is mainly characterized by aggregated β-amyloid (Aβ). Increasing evidence has shown that plant extracts have the potential to delay AD development. The plant sterol β-Sitosterol has a potential role in inhibiting the production of platelet Aβ, suggesting that it may be useful for AD prevention. In the present study, we aimed to investigate the effect and mechanism of β-Sitosterol on deficits in learning and memory in amyloid protein precursor/presenilin 1 (APP/PS1) double transgenic mice. APP/PS1 mice were treated with β-Sitosterol for four weeks, from the age of seven months. Brain Aβ metabolism was evaluated using ELISA and Western blotting. We found that β-Sitosterol treatment can improve spatial learning and recognition memory ability, and reduce plaque load in APP/PS1 mice. β-Sitosterol treatment helped reverse dendritic spine loss in APP/PS1 mice and reversed the decreased hippocampal neuron miniature excitatory postsynaptic current frequency. Our research helps to explain and support the neuroprotective effect of β-Sitosterol, which may offer a novel pharmaceutical agent for the treatment of AD. Taken together, these findings suggest that β-Sitosterol ameliorates memory and learning impairment in APP/PS1 mice and possibly decreases Aβ deposition.