• Title/Summary/Keyword: Amyloid protein

Search Result 284, Processing Time 0.029 seconds

The Acetylcholinesterase Inhibitory Activity of the EtOH Extract of Chaenomelis Fructus and its effects on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells (모과 에탄올 추출물의 아세틸콜린에스테라제 저해활성과 신경세포에서 아밀로이드 전구단백질의 대사에 미치는 영향)

  • Kim, Ju Eun;Jo, Youn Jeong;Leem, Jae Yoon
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.4
    • /
    • pp.327-333
    • /
    • 2015
  • Alzheimer's disease (AD) is a progressive neurodegenerative disorder symptomatically characterized by impairment in memory and cognitive abilities. AD is characterized pathologically by the deposition of ${\beta}$-amyloid ($A{\beta}$) peptides of 40-42 residues, which are generated by processing of amyloid precursor protein (APP). $A{\beta}$ has been believed to be neurotoxic and now is also considered to have a role on the mechanism of memory dysfunction. In this study, we tested that EtOH extract of the fruits of Chaenomeles sinensis Koehne (CSE) affects on the processing of APP from the APPswe over-expressing Neuro2a cell line. We found that CSE increased over 2 folds of the $sAPP{\alpha}$ secretion level, a metabolite of ${\alpha}$-secretase. We showed that CSE reduced the secretion level of $A{\beta}42$ and $A{\beta}40$ by down regulation of ${\beta}$-secretase (BACE) without cytotoxicity. Furthermore, we found that CSE inhibited BACE and acetylcholinesterase activity in vitro. We suggest that Chaenomelis Fructus may be an useful source to develop a herbal medicine for AD.

Mitochondrial Complex I Inhibition Accelerates Amyloid Toxicity

  • Joh, Yechan;Choi, Won-Seok
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.417-424
    • /
    • 2017
  • Alzheimer's disease (AD) is neurodegenerative disease, characterized by the progressive decline of memory, cognitive functions, and changes in personality. The major pathological features in postmortem brains are neurofibrillary tangles and amyloid beta ($A{\beta}$) deposits. The majority of AD cases are sporadic and age-related. Although AD pathogenesis has not been established, aging and declining mitochondrial function has been associated. Mitochondrial dysfunction has been observed in AD patients' brains and AD mice models, and the mice with a genetic defect in mitochondrial complex I showed enhanced $A{\beta}$ level in vivo. To elucidate the role of mitochondrial complex I in AD, we used SH-SY5Y cells transfected with DNA constructs expressing human amyloid precursor protein (APP) or human Swedish APP mutant (APP-swe). The expression of APP-swe increased the level of $A{\beta}$ protein in comparison with control. When complex I was inhibited by rotenone, the increase of ROS level was remarkably higher in the cells overexpressing APP-swe compared to control. The number of dead cell was significantly increased in APP-swe-expressing cells by complex I inhibition. We suggest that complex I dysfunction accelerate amyloid toxicity and mitochondrial complex I dysfunction in aging may contribute to the pathogenesis of sporadic AD.

Inhibitory Effect of an Ethanol Extract Mixture of Vitis amurensis, Aralia cordata, and Glycyrrhizae radix on Amyloid β Protein (25-35)-Induced Neurotoxicity (머루전초, 독활전초, 감초 혼합추출물의 Amyloid β Protein (25-35) 유발 신경 독성에 대한 억제효과)

  • Jang, Ji Yeon;Seong, Yeon Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.2
    • /
    • pp.105-112
    • /
    • 2014
  • The present study investigated an ethanol extract (SSB) of a mixture of three medicinal plants of Vitis amurensis, Aralia cordata, and Glycyrrhizae radix for possible neuroprotective effects on neurotoxicity induced by Amyloid ${\beta}$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons and antidementia activity in mice. Exposure of cultured cortical neurons to $15{\mu}M$ $A{\beta}$ (25-35) for 36 h induced neuronal apoptotic death. At $1-30{\mu}g/m{\ell}$, SSB inhibited neuronal death, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) induced by $A{\beta}$ (25-35) in cultured cortical neurons. Memory impairment and increase of acetylcholinesterase activity induced by intracerebroventricular injection of mice with 16 nmol $A{\beta}$ (25-35) was inhibited by chronic treatment with SSB (25, 50 and 100 mg/kg, p.o., for 8 days). From these results, it is suggested that antidementia effect of SSB is due to its neuroprotective effect against $A{\beta}$ (25-35)-induced neurotoxicity and that SSB may have a therapeutic role in preventing the progression of Alzheimer's disease.

Moutan Cortex Extract Inhibits Amyloid ${\beta}$ Protein (25-35)-induced Neurotoxicity in Cultured Rat Cortical Neurons (Amyloid ${\beta}$ 2 Protein (25-35) 유도 배양신경세포 독성에 대한 목단피의 억제효과)

  • Kim, Joo-Youn;Ju, Hyun-Soo;Ban, Ju-Yeon;Song, Kyung-Sik;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.6
    • /
    • pp.409-415
    • /
    • 2008
  • Moutan cortex, the root bark of Paeonia suffruticosa Andrews (Paeoniaceae), has pharmacological effects such as anti-inflammatory, antiallergic, analgesic and antioxidant activities. We investigated a methanol extract of Moutan cortex for neuroprotective effects on neurotoxicity induced by amyloid ${\beta}$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons. Exposure of cultured cortical neurons to $10\;{\mu}M\;A{\beta}$ (25-35) for 24 h induced neuronal apoptotic death. Moutan cortex inhibited $10\;{\mu}M\;A{\beta}$ (25-35)-induced neuronal cell death at 30 and $50\;{\mu}g/m{\ell}$, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. Moutan cortex inhibited $10\;{\mu}M\;A{\beta}$ (25-35)-induced elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) which were measured by fluorescent dyes. Moutan cortex also inhibited glutamate release into medium induced by $10\;{\mu}M\;A{\beta}$ (25-35), which was measured by HPLC. These results suggest that Moutan cortex prevents $A{\beta}$ (25-35)-induced neuronal cell damage by interfering with the increase of $[Ca^{2+}]_i$, and then inhibiting glutamate release and ROS generation. Moutan cortex may have a therapeutic role in preventing the progression of Alzheimer's disease.

Inhibitory Effect of Chaenomeles sinensis Fruit on Amyloid β Protein (25-35)-Induced Neurotoxicity in Cultured Neurons and Memory Impairment in Mice (Amyloid β protein (25-35)-유도 배양신경 세포독성 및 마우스기억손상에 대한 목과의 억제효과)

  • Jung, Myung-Hwan;Song, Kyung-Sik;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • The present study investigated an ethanol extract of Chaenomeles sinensis fruit (CSF) for possible neuroprotective effects on neurotoxicity induced by amyloid ${\beta}$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons and also for antidementia activity in mice. Exposure of cultured cortical neurons to $10{\mu}M\;A{\beta}$ (25-35) for 36 h induced neuronal apoptotic death. At $0.1-10{\mu}g/m{\ell}$, CSF inhibited neuronal death, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) induced by $A{\beta}$ (25-35) in primary cultures of rat cortical neurons. Memory loss induced by intracerebroventricular injection of mice with 15 nmol $A{\beta}$ (25-35) was inhibited by chronic treatment with CSF (10, 25 and 50 mg/kg, p.o. for 7 days) as measured by a passive avoidance test. CSF (50 mg/kg) inhibited the increase of cholinesterase activity in $A{\beta}$ (25-35)-injected mice brain. From these results, we suggest that the antidementia effect of CSF is due to its neuroprotective effect against $A{\beta}$ (25-35)-induced neurotoxicity and that CSF may have a therapeutic role for preventing the progression of Alzheimer's disease.

Protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride on hypoxia-induced β-amyloid production in SH-SY5Y cells

  • Han, A Reum;Yang, Ji Woong;Na, Jung-Min;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.439-444
    • /
    • 2019
  • Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer's disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced ${\beta}$-amyloid ($A{\beta}$) generation and development of AD is not yet known. We have now investigated the protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride (KHG26702), a novel thiazole derivative, on oxygen-glucose deprivation (OGD)-reoxygenation (OGD-R)-induced $A{\beta}$ production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with KHG26702 significantly attenuated OGD-R-induced production of reactive oxygen species and elevation of levels of malondialdehyde, prostaglandin $E_2$, interleukin 6 and glutathione, as well as superoxide dismutase activity. KHG26702 also reduced OGD-R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, KHG26702 reduced OGD-R-induced $A{\beta}$ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that KHG26702 may prevent neuronal cell damage from OGD-R-induced toxicity.

Effect of 42 amino acid long amyloid-β peptides on Arabidopsis plants

  • Lee, HanGyeol;Kim, Ji Woo;Jeong, Sangyun;An, Jungeun;Kim, Young-Cheon;Ryu, Hojin;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.283-288
    • /
    • 2020
  • Although the evolution of Arabidopsis thaliana and humans diverged approximately 1.6 billion years ago, recent studies have demonstrated that protein function and cellular processes involved in disease response remain remarkably conserved. Particularly, γ-secretase, a multisubunit protein complex that participates in intramembrane proteolysis (RIP) regulation, is also known to mediate the cleavage of more than 80 substrates including the amyloid precursor protein (APP) and the Notch receptor. Although the genes (PS1/2, APH-1, PEN-2, and NCT) coding for the γ-secretase complex components are present in plant genomes, their function remains largely uncharacterized. Given that the deposition of 42 amino acid long amyloid-β peptides (hAβ42) is thought to be one of the main causes of Alzheimer's disease, we aimed to examine the physiological effects of hAβ42 peptides on plants. Interestingly, we found that Arabidopsis protoplast death increased after 24 h of exposure to 3 or 5 µM hAβ42 peptides. Furthermore, transgenic Arabidopsis plants overexpressing the hAβ42 gene exhibited changes in primary root length and silique phyllotaxy. Taken together, our results demonstrate that hAβ42 peptides, a metazoan protein, significantly affect Arabidopsis protoplast viability and plant morphology.

Protective Effects of Rehmannia Glutinosa Extract and Rehmannia Glutinosa Vinegar against b-amyloid-induced Neuronal Cell Death (베타아밀로이드로 유도된 신경세포사멸에 대한 지황(地黃) 및 지황식초(地黃食醋)의 보호효과)

  • Song, Hyo-In;Kim, Kwang-Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.190-198
    • /
    • 2007
  • Alzheimer's disease, a representative neurodegenerative disorder, is characterized by the presence of senile plaques and neurofibrillary tangles accompanied by neuronal damages. b-Amyloid peptide is considered to be responsible for the formation of senile plagues that accumulate in the brains of patients with Alzheimer's disease. There has been compelling evidence supporting that b-amyloid-induced cytotoxicity is mediated through generation of reactive oxygen species. In this study, we have investigated the possible protective effect of Rehmannia glutihosaagainst b-amyloid-induced oxidative ceil death in cultured human neuroblastoma SH-SY5Y cells. SH-SY5Y cells treated with b-amyloid underwent apoptotic death as determined by morphological features and positive in situterminal end-labeling (TUNEL staining). Rehmannia glutinosawater extract, wine, and vinegar pretreatments attenuated b-amyloid-induced cytotoxicity and apoptosis. Rehmannia glutinosa vinegar exhibited maximum protective effect by increasing the expression of anti-apoptotic protein, Bcl-2. in addition to oxidative stress, b-amyloid-treatment caused nitrosative stress via marked increase in the levels of nitric oxide, which was effectively blocked by Rehmannia glutinosa. To further explore the possible molecular mechanisms underlying the protective effect of Rehmannia glutinosa, we assessed the mRNA expression of cellular antioxidant enzymes. Treatment of Rehmannia glutinosa vinegar led to up-regulation of heme oxygemase-1 and catalase. These results suggest that Rehmannia glutinosa could modulate oxidative neuronal cell death caused by b-amyloid and may have preventive or therapeutic potential in the management of Alzheimer's disease. Particularly, Rehmannia glutinosa vinegar can augment cellular antioxidant capacity, there by exhibiting higher neuroprotective potential.

Effects of KSM on the Cytotoxicity of Amyloid β Protein and the APP's Molecular Weight (가미신선불로단이 알츠하이머병 진단지표인 아리로이드 단백독성과 APPr에 미치는 영향)

  • Eom Hyun Sup
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.53-57
    • /
    • 2004
  • In order to evaluate the neuroprotective effects of Kamisinsunbulo-dan(KSM), the cytotoxicity of amyloid β and the recovering effect of KSM were checked at first. Then the viability of C6 cells was tested in comparison with each concentration of KSM. The cytotoxicity of amyloid β(31-35) showed from 5 μM higher to 100 μM. And the recovering effect by KSM showed significantly at 100㎍/㎖. concentration. And the cell viability was shown significantly over 200 ㎍/㎖ of KSM. This is thought that the viability has some relation to length of culturing duration, 6 to 12 hrs. Lastly in the western blotting of APP, the amount of low molecule's APP was decreased. So the APP form ratio(APPr) changed to increase, and it meant that KSM can be used to lower the toxic APP, and can be a candidate for Alzheimer's disease.

Multiple Recurrent Cerebral Hemorrhages Related to Cerebral Amyloid Angiopathy with Arterial Hypertension

  • Jung, Jae-Hyun;Shin, Dong-Ah;Gong, Tae-Sik;Kwon, Chang-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.39 no.6
    • /
    • pp.447-450
    • /
    • 2006
  • Cerebral amyloid angiopathy[CAA] is characterized by the deposition of amyloid ${\beta}-protein$ in the walls of small to medium-sized arteries of the leptomeninges and cerebral cortex. While often asymptomatic, CAA can develop into intracerebral hemorrhage facilitated by arterial hypertension. We report the case of a 52-year-old man with CAA and arterial hypertension who developed recurrent cerebral hemorrhages on three different occasions and in multiple non-overlapping loci over a period of nine years. Based on our findings, we recommend brain biopsies for all patients undergoing evacuation of multiple recurrence or atypical pattern intracerebral hemorrhages.