• Title/Summary/Keyword: Amyloid fibrils

Search Result 24, Processing Time 0.025 seconds

Nanomechanical behaviors and properties of amyloid fibrils

  • Choi, Bumjoon;Lee, Sang Woo;Eom, Kilho
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.1
    • /
    • pp.53-64
    • /
    • 2016
  • Amyloid fibrils have recently been considered as an interesting material, since they exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is larger than that of other protein materials. Despite recent findings of these excellent mechanical properties for amyloid fibrils, it has not been fully understood how these excellent mechanical properties are achieved. In this work, we have studied the nanomechanical deformation behaviors and properties of amyloid fibrils such as their elastic modulus as well as fracture strength, by using atomistic simulations, particularly steered molecular dynamics simulations. Our simulation results suggest the important role of the length of amyloid fibrils in their mechanical properties such that the fracture force of amyloid fibril is increased when the fibril length decreases. This length scale effect is attributed to the rupture mechanisms of hydrogen bonds that sustain the fibril structure. Moreover, we have investigated the effect of boundary condition on the nanomechanical deformation mechanisms of amyloid fibrils. It is found that the fracture force is critically affected by boundary condition. Our study highlights the crucial role of both fibril length and boundary condition in the nanomechanical properties of amyloid fibrils.

Control of Morphology and Subsequent Toxicity of AβAmyloid Fibrils through the Dequalinium-induced Seed Modification

  • Kim, Jin-A;Myung, Eun-Kyung;Lee, In-Hwan;Paik, Seung-R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2283-2287
    • /
    • 2007
  • Amyloid fibril formation of amyloid β/A4 protein (Aβ) is critical to understand the pathological mechanism of Alzheimer's disease and develop controlling strategy toward the neurodegenerative disease. For this purpose, dequalinium (DQ) has been employed as a specific modifier for Aβ aggregation and its subsequent cytotoxicity. In the presence of DQ, the final thioflavin-T binding fluorescence of Aβ aggregates decreased significantly. It was the altered morphology of Aβ aggregates in a form of the bundles of the fibrils, distinctive from normal single-stranded amyloid fibrils, and the resulting reduced β-sheet content that were responsible for the decreased fluorescence. The morphological transition of Aβ aggregates assessed with atomic force microscope indicated that the bundle structure observed with DQ appeared to be resulted from the initial multimeric seed structure rather than lateral association of preformed single-stranded fibrils. Investigation of the seeding effect of the DQ-induced Aβ aggregates clearly demonstrated that the seed structure has determined the final morphology of Aβ aggregates as well as the aggregative kinetics by shortening the lag phase. In addition, the cytotoxicity was also varied depending on the final morphology of the aggregates. Taken together, DQ has been considered to be a useful chemical probe to control the cytotoxicity of the amyloid fibrils by influencing the seed structures which turned out to be central to develop therapeutic strategy by inducing the amyloid fibrils in different shapes with varied toxicities.

Amyloid Polymorphism of α-Synuclein Induced by Active Firefly Luciferase

  • Yang, Jee Eun;Hong, Je Won;Kim, Jehoon;Paik, Seung R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.425-430
    • /
    • 2014
  • Amyloidogenic proteins often exhibit fibrillar polymorphism through alternative assembly processes, which has been considered to have possible pathological implications. Here, firefly luciferase (LUC) is shown to induce amyloid polymorphism of ${\alpha}$-synuclein, the major constituent of Lewy bodies found in Parkinson's disease, by acting as a novel template. The drastically accelerated fibrillation kinetics of ${\alpha}$-synuclein with LUC required the nucleation center produced by the active enzyme of LUC. Fluorescent dye binding, transmission electron microscopy, and Fourier transformed infrared spectroscopy revealed the morphologically distinctive amyloid fibrils of ${\alpha}$-synuclein prepared in the absence or presence of LUC. As the altered morphological characteristics became inherent to the mature fibrils, those properties were inherited to next-generations via nucleation-dependent fibrillation process. The seed control, therefore, would be an effective means to modify amyloid fibrils with different biochemical characteristics. In addition, the LUC-directed amyloid fibrillar polymorphism also suggests that other cellular biomolecules including enzymes in general are able to diversify amyloid fibrils, which could be self-propagated with diversified biological activities, if any, inside cells.

Polyphenolic Biflavonoids Inhibit Amyloid-Beta Fibrillation and Disaggregate Preformed Amyloid-Beta Fibrils

  • Choi, Erika Y.;Kang, Sam Sik;Lee, Sang Kook;Han, Byung Hee
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.145-151
    • /
    • 2020
  • Alzheimer's disease (AD) is a devastating neurodegenerative disease and a major cause of dementia in elderly individuals worldwide. Increased deposition of insoluble amyloid β (Aβ) fibrils in the brain is thought be a key neuropathological hallmark of AD. Many recent studies show that natural products such as polyphenolic flavonoids inhibit the formation of insoluble Aβ fibrils and/or destabilize β-sheet-rich Aβ fibrils to form non-cytotoxic aggregates. In the present study, we explored the structure-activity relationship of naturally-occurring biflavonoids on Aβ amyloidogenesis utilizing an in vitro thioflavin T assay with Aβ1-42 peptide which is prone to aggregate more rapidly to fibrils than Aβ1-40 peptide. Among the biflavonoids we tested, we found amentoflavone revealed the most potent effects on inhibiting Aβ1-42 fibrillization (IC50: 0.26 µM), as well as on disassembling preformed Aβ1-42 fibrils (EC50: 0.59 µM). Our structure-activity relationship study suggests that the hydroxyl groups of biflavonoid compounds play an essential role in their molecular interaction with the dynamic process of Aβ1-42 fibrillization. Our atomic force microscopic imaging analysis demonstrates that amentoflavone directly disrupts the fibrillar structure of preformed Aβ1-42 fibrils, resulting in conversion of those fibrils to amorphous Aβ1-42 aggregates. These results indicate that amentoflavone affords the most potent anti-amyloidogenic effects on both inhibition of Aβ1-42 fibrillization and disaggregation of preformed mature Aβ1-42 fibrils.

Secondary renal amyloidosis in a 13-year-old girl with bronchiectasis

  • Yang, Eun-Ae;Lee, Dong-Won;Hyun, Myung-Chul;Cho, Min-Hyun
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.7
    • /
    • pp.770-773
    • /
    • 2010
  • A 13-year-old girl was diagnosed with non-cystic fibrosis (CF)-related multifocal bronchiectasis accompanied by nephrotic-range proteinuria of unknown cause. On renal biopsy, there were many segmental homogeneous deposits of amyloid tissue with positive Congo red staining in the glomeruli and interstitium. On electron microscopy, relatively straight, non-branching, randomly arranged amyloid fibrils were showed in the mesangium of the glomeruli. These fibrils were approximately 10 nm in diameter, compatible with secondary amyloidosis. Her level of serum amyloid A was remarkably elevated. To our knowledge, this girl is the first case of secondary renal amyloidosis induced by bronchiectasis in Korean children.

End-to-end Structural Restriction of α-Synuclein and Its Influence on Amyloid Fibril Formation

  • Hong, Chul-Suk;Park, Jae Hyung;Choe, Young-Jun;Paik, Seung R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3542-3546
    • /
    • 2014
  • Relationship between molecular freedom of amyloidogenic protein and its self-assembly into amyloid fibrils has been evaluated with ${\alpha}$-synuclein, an intrinsically unfolded protein related to Parkinson's disease, by restricting its structural plasticity through an end-to-end disulfide bond formation between two newly introduced cysteine residues on the N- and C-termini. Although the resulting circular form of ${\alpha}$-synuclein exhibited an impaired fibrillation propensity, the restriction did not completely block the protein's interactive core since co-incubation with wild-type ${\alpha}$-synuclein dramatically facilitated the fibrillation by producing distinctive forms of amyloid fibrils. The suppressed fibrillation propensity was instantly restored as the structural restriction was unleashed with ${\beta}$-mercaptoethanol. Conformational flexibility of the accreting amyloidogenic protein to pre-existing seeds has been demonstrated to be critical for fibrillar extension process by exerting structural adjustment to a complementary structure for the assembly.

A Mini Review on Aβ Oligomers and its Pathogencity

  • Tuyet, Pham Thi Dieu
    • Journal of Integrative Natural Science
    • /
    • v.7 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • Amyloid oligomers are believed to play important causal roles in many types of amyloid-related degenerative diseases. Many different laboratories have reported amyloid oligomers that differ in size, morphology, toxicity, and method of preparation or purification, raising the question of the structural relationships among these oligomer preparations. The structural plasticity that has been reported to occur in amyloid formed from the same protein sequence indicates that it is quite possible that different oligomer preparations may represent distinct structural variants. In view of the difficulty in determining the precise structure of amyloids, conformation- and epitope-specific antibodies may provide a facile means of classifying amyloid oligomer structures. Conformation-dependent antibodies that recognize generic epitopes that are specifically associated with distinct aggregation states of many different amyloid-forming sequences indicate that there are at least two fundamentally distinct types of amyloid oligomers: fibrillar and prefibrillar oligomers. Classification of amyloid oligomers according to their underlying structures may be a more useful and rational approach than relying on differences in size and morphology.

Protective Effect of Citrate against $A{\beta}$-induced Neurotoxicity in PC12 Cells

  • Yang, Hyun-Duk;Son, Il-Hong;Lee, Sung-Soo;Park, Yong-Hoon
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.157-163
    • /
    • 2008
  • Formation of ${\beta}$-amyloid $(A{\beta})$ fibrils has been identified as one of the major characteristics of Alzheimer's disease (AD). Inhibition of $A{\beta}$ fibril formation in the CNS would be attractive therapeutic targets for the treatment of AD. Several small compounds that inhibit amyloid formation or amyloid neurotoxicity in vitro have been known. Citrate has surfactant function effect because of its molecular structure having high anionic charge density, in addition to the well-known antibacterial and antioxidant properties. Therefore, we hypothesized that citrate might have the inhibitory effect against $A{\beta}$ fibril formation in vitro and have the protective effect against $A{\beta}$-induced neurotoxicity in PC12 cells. We examined the effect of citrate against the formation of $A{\beta}$ fibrils by measuring the intensity of fluorescence in thioflavin-T (Th-T) assay of between $A{\beta}_{25-35}$ groups treated with citrate and the control with $A{\beta}_{25-35}$ alone. The neuroprotective effect of citrate against $A{\beta}$-induced toxicity in PC12 cells was investigated using the WST-1 assay. Fluorescence spectroscopy showed that citrate inhibited dose-dependently the formation of $A{\beta}$ fibrils from ${\beta}$-amyloid peptides. The inhibition percentages of $A{\beta}$ fibril formation by citrate (1, 2.5, and 5 mM) were 31%, 60%, and 68% at 7 days, respectively in thioflavin-T (Th-T) assay. WST-1 assay revealed that the toxic effect of $A{\beta}_{25-35}$ was reduced, in a dose-dependent manner to citrate. The percentages of neuroprotection by citrate (1, 2.5, and 5 mM) against $A{\beta}-induced$ toxicity were 19%, 31 %, and 34%, respectively. We report that citrate inhibits the formation of $A{\beta}$ fibrils in vitro and has neuroprotective effect against $A{\beta}$-induced toxicity in PC12 cells. Neuroprotective effects of citrate against $A{\beta}$ might be, to some extent, attributable to its inhibition of $A{\beta}$ fibril formation. Although the mechanism of anti-amyloidogenic activity is not clear, the possible mechanism is that citrate might have two effects, salting-in and surfactant effects. These results suggest that citrate could be of potential therapeutic value in Alzheimer's disease.

Molecular Simulations for Anti-amyloidogenic Effect of Flavonoid Myricetin Exerted against Alzheimer’s β-Amyloid Fibrils Formation

  • Choi, Young-Jin;Kim, Thomas Donghyun;Paik, Seung R.;Jeong, Karp-Joo;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1505-1509
    • /
    • 2008
  • Comparative molecular simulations were performed to establish molecular interaction and inhibitory effect of flavonoid myricetin on formation of amyloid fibris. For computational comparison, the conformational stability of myricetin with amyloid $\beta$ -peptide (A$\beta$ ) and $\beta$ -amyloid fibrils (fA$\beta$) were traced with multiple molecular dynamics simulations (MD) using the CHARMM program from Monte Carlo docked structures. Simulations showed that the inhibition by myricetin involves binding of the flavonoid to fA$\beta$ rather than A$\beta$ . Even in MD simulations over 5 ns at 300 K, myricetin/fA$\beta$ complex remained stable in compact conformation for multiple trajectories. In contrast, myricetin/A$\beta$ complex mostly turned into the dissociated conformation during the MD simulations at 300 K. These multiple MD simulations provide a theoretical basis for the higher inhibitory effect of myricetin on fibrillogenesis of fA$\beta$ relative to A$\beta$ . Significant binding between myricetin and fA$\beta$ observed from the computational simulations clearly reflects the previous experimental results in which only fA$\beta$ had bound to the myricetin molecules.

High-pressure NMR application for amyloid-beta peptides

  • Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.1
    • /
    • pp.17-20
    • /
    • 2022
  • High-pressure (HP) NMR is a versatile tool to investigate diverse features of proteins. This technique has been particularly powerful to elucidate structural dynamics that only populates sufficiently in a pressurized condition. Amyloidogenic proteins, which are prone to aggregate and form amyloid fibrils, often maintains highly dynamic states in its native or aggregation-prone states, and HP NMR contributed much to advance our understandings of the dynamic behaviors of amyloidogenic proteins and the molecular mechanisms of their aggregation. In this mini review, we therefore summarize recent HP NMR studies on amyloid-beta (Aβ), the representative amyloidogenic intrinsically disordered protein (IDP).