• Title/Summary/Keyword: Amyloid beta ($A{\beta}$) protein

Search Result 198, Processing Time 0.027 seconds

Mitochondrial Complex I Inhibition Accelerates Amyloid Toxicity

  • Joh, Yechan;Choi, Won-Seok
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.417-424
    • /
    • 2017
  • Alzheimer's disease (AD) is neurodegenerative disease, characterized by the progressive decline of memory, cognitive functions, and changes in personality. The major pathological features in postmortem brains are neurofibrillary tangles and amyloid beta ($A{\beta}$) deposits. The majority of AD cases are sporadic and age-related. Although AD pathogenesis has not been established, aging and declining mitochondrial function has been associated. Mitochondrial dysfunction has been observed in AD patients' brains and AD mice models, and the mice with a genetic defect in mitochondrial complex I showed enhanced $A{\beta}$ level in vivo. To elucidate the role of mitochondrial complex I in AD, we used SH-SY5Y cells transfected with DNA constructs expressing human amyloid precursor protein (APP) or human Swedish APP mutant (APP-swe). The expression of APP-swe increased the level of $A{\beta}$ protein in comparison with control. When complex I was inhibited by rotenone, the increase of ROS level was remarkably higher in the cells overexpressing APP-swe compared to control. The number of dead cell was significantly increased in APP-swe-expressing cells by complex I inhibition. We suggest that complex I dysfunction accelerate amyloid toxicity and mitochondrial complex I dysfunction in aging may contribute to the pathogenesis of sporadic AD.

Effects of 3-Phenyl-1-isoquinolinamine on the Metabolism of ${\beta}$-Amyloid Precursor Protein in Neuroblastoma Cells (3-페닐-1-이소퀴놀린아민이 신경세포에서 베타 아밀로이드 전구단백질의 대사에 미치는 영향)

  • Leem, Jae-Yoon;Cho, Won-Jea
    • YAKHAK HOEJI
    • /
    • v.54 no.6
    • /
    • pp.529-534
    • /
    • 2010
  • Alzheimer's disease (AD) is characterized pathologically by the presence of intracellular neurofibrillary tangles and deposition of ${\beta}$-amyloid ($A{\beta}$) peptides, which are generated by processing of amyloid precursor protein (APP). It is urgent to develop effective therapies for the treatment of AD, since our society rapidly accelerate aging. $A{\beta}$ peptides have been believed to be neurotoxic and now are also considered to have effects on the mechanism of memory formation. Recently, we investigated that a quinoline compound from natural product reduced the secretion of $A{\beta}$ from the neuroblastoma N2a cells (NL/N cell line) overexpressing APPswe. In this study, 3-phenyl-1-isoquinolinamine, a synthetic isoquinoline compound was analyzed to determine its effects on the metabolism of APP. It inhibited the secretion of $A{\beta}$ peptides from the N2a NL/N cell line. Beta-site APP cleaving enzyme (BACE) fluorescence resonance energy transfer (FRET) assay revealed that it inhibited BACE activity in a dose dependent manner. Immunoblotting study showed that it inhibited APP stabilization and expression and it slightly increased the stablization and the expression of ${\gamma}$-secreatase component from the N2a NL/N cell line. We suggest that 3-phenyl-1-isoquinolinamine inhibits APP metabolism and $A{\beta}$ generation by the means of BACE inhibitory mechanism. This is the first report that 3-phenyl-1-isoquinolinamine inhibits the secretion of $A{\beta}$ peptides from neuroblastoma cells.

Non-Fibrillar $\beta$-Amyloid Exerts Toxic Effect on Neuronal Cells

  • Kim, Hyeon-Jin;Hong, Seong-Tshool
    • Animal cells and systems
    • /
    • v.5 no.2
    • /
    • pp.139-143
    • /
    • 2001
  • Alzheimer's disease is the most common form of dementia and no cure is known so far. Extensive genetic works and in vitro experiments combined with clinical observations link amyloid $\beta$--protein (A$\beta$-) to the pathogenesis of Alzheimer's disease (AD). It was hypothesized that $A\beta$- becomes toxic when it adopts a fibrillar conformation. Recently, non-fibrillar form of $A\beta$- was observed and the potential role in the pathogenesis of AD became an interesting subject. In this study, the cytotoxicity of non-fibrillar $A\beta$- and fibrillar $A\beta$- was compared on oxidative stress, membrane damage, or nucleosome break down. Non-fibrillar $A\beta$- was not toxic in peripheral nervous system-derived cells but significantly toxic in central nervous system-derived cells while fibrillar $A\beta$- was non-selectively toxic in both cell culture. The neurotoxicity of non-fibrillar $A\beta$- was reproduced in semi-in vivo culture of mouse brain slice. In conclusion, non-fibrillar $A\beta$- could be more relevant to the selective neurodegeneration in Alzheimer's brains than fibrillar $A\beta$- and further research needs to be done for identification of the cause of AD.

  • PDF

Detection and Quantification Method of Beta-amyloid for Alzheimer Disease Diagnosis (알츠하이머 질병의 조기진단을 위한 베타 아밀로이드의 검출 및 정량화 방법)

  • Kim, Kwan-Su;Kang, Jae-Min;Chae, Cheol-Joo;Song, Ki-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.220-220
    • /
    • 2010
  • The beta-amyloid protein ($A_{\beta}$) is well known for main cause of Alzheimer disease (AD). Generally, detection of $A_{\beta}$ is carried out by using fluorescent material or DNA test, but these process is long time and expensive process. Therefore, in this research, we investigated the simple diagnosis method to detect the $A_{\beta}$ by using photo-transistor.

  • PDF

Protective effects of Cirsium japonicum var. maackii against amyloid beta-induced neurotoxicity in C6 glial cells

  • Kim, Ji Hyun;Kim, Min Jeong;Choi, Ji Myung;Lee, Sanghyun;Cho, Eun Ju
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.2
    • /
    • pp.369-379
    • /
    • 2019
  • Alzheimer's disease (AD) is the most common neurodegenerative disease associated with age, and amyloid beta ($A{\beta}$) is known to cause Alzheimer's disease. In the present study, we investigated the protective effects of Cirsium japonicum var. maackii extract and its fractions against $A{\beta}$-induced neurotoxicity in C6 glial cells. The cells treated with $A{\beta}_{25-35}$ showed a decrease in cell viability and an increase in reactive oxygen species (ROS) production compared with the non-treated cells. However, the cells treated with the C. japonicum var. maackii extract and its fractions increased the cell viability and inhibited the $A{\beta}$-induced ROS production. These results demonstrate the neuroprotective effects of C. japonicum var. maackii against $A{\beta}$. To further examine the protective mechanism, we measured inflammation and apoptosis related protein expressions. The cells treated with extract and fractions from C. japonicum var. maackii down-regulated inflammatory related proteins such as cyclooxygenase-2, interleukin $(IL)-1{\beta}$, and IL-6, and attenuated apoptosis related proteins including B-cell lymphoma-2 (Bcl-2) associated X protein/Bcl-2 ratio. In particular, the ethanol and ethylacetate fraction exhibited higher inhibitory effect against ROS production and apoptosis-related protein expressions among the extract and the other fractions. Therefore, this study demonstrated the protective effects of C. japonicum var. maackii extract and its fractions against $A{\beta}$-induced neurotoxicity in C6 glial cells through the regulation of oxidative stress, inflammation, and apoptosis, suggesting that it might have potential as a therapeutic for AD.

Protection effect of New-Yeolda-Hanso tang against $\beta$-Amyloid Induced Cytotoxicity in NGF-differentiated PC12 Cells ($\beta$-Amyloid로 유도된 신경독성에 대한 열다한소탕(熱多寒少湯) 가감방(加感方)의 항(抗)치매효과)

  • Bae, Na-Young;Yang, Hyun-Ok;Ahn, Taek-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.21 no.3
    • /
    • pp.138-153
    • /
    • 2009
  • 1. Objectives: Yeolda-Hanso tang (YH) has long been used as traditional herbal formula in Korea as various diseases. Now we modified Yeolda-Hanso tang (YH) for neurodegenerative diseases treatment and named New-Yeolda-Hanso tang (NYH). We investigated neuroprotective effects of NYH on NGF-differentiated PC12 cells cytotoxicity induced by $\beta$-Amyloid peptide (A$\beta$25-35) and evaluated the ability of NYH to prevent and treat for neurodegenerative diseases via autophagy enhancement. 2. Methods and Results: 1) Protective effect of NYH on PC12 cells cytotoxity induced by A$\beta$25-35. PC12 cells survival was measured by MTT and lactate dehydrogenase (LDH) assay. $20{\mu}M$ $\beta$-Amyloid peptide (A$\beta$25-35) induced cytotoxicity on NGF-differentiated PC12 cells. NYH attenuated the cytotoxic effects of A$\beta$25-35 in a dose-dependent manner. 2) Pharmacological induction of Autophagy by NYH in PC12 cells Autophagy induction and activation was measured by immunoblot assay. Marker of autophagy, LC3 II expression and the ratio of LC3-II/I was slightly increased in the protein treated with YH, and significantly augmented in the protein treated with NYH. NYH-induced increase of LC3-II protein level was inhibited by 3MA. 3) Induction of Autophagy by NYH on A$\beta$25-35-induced injury in PC12 cells In MTT assay, $100{\mu}g/ml$ re-treated NYH attenuated $20{\mu}M$ A$\beta$25-35-induced cytotoxicity in PC12 cells. Protection effect of NYH was blocked by autophagy inhibitor 3MA. In immunoblot assay, $1200{\mu}g/ml$ pre-treated NYH activated autophagy in $20{\mu}M$ A$\beta$25-35-induced cytotoxicity in PC12 cells. The observed effect was partially blocked by 3MA. 3. Conclusions: All the results indicated that NYH possesses neuroprotective potential partially mediated by autophagy enhancement and NYH may be considered to be a promising new herbal formula to prevent and treat for neurodegenerative diseases including Alzheimer's disease (AD).

  • PDF

Searching for blue ocean of Alzheimer's disease drug discovery

  • MookJung, In-Hee
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.04a
    • /
    • pp.109-120
    • /
    • 2006
  • Alzheimer's disease (AD) is an age-related neurodegenerative disorder. The pathological hallmarks of AD are senile plaques and neurofibrillary tangles in the brain. Major component of senile plaques is amyloid beta peptide(A$\beta$) which is derived from amyloid precursor protein (APP). A$\beta$ is generated through the sequential cleavage of App by $\beta$ - and $\gamma$-secretases. $\beta$-secretase excises the ectodomain of APP ($\beta$-APPs) to leave a 99-amino acid long C-terminal fragment (APP-C99-CTF) in the membrane. $\gamma$-secretase then cleaves this membrane-tethered APP-CTF within the transmembrane domain, so releasing A$\beta$ peptides and APP-intracellular domain (AICD). Thus, $\beta$- and $\gamma$-secretase are regarded to perform the key steps in the pathogenesis of AD and have become important therapeutic targets in the prevention and treatment of AD. Enormous efforts have been focused to develop the amyloid beta related drug for cure of AD becuase A$\beta$ is believed to be one of the major causes of AD. since major pharmaceutical companies in world wide base compete to develop new drug for AD, we have to be careful to choose the drug target to success the tough race. In the present talk, possible drug targets based on basic research results will be discussed. These molecules should be a good target for development of new drug for AD and be less competitive to have a good shape for world wide competition.

  • PDF

Ethanol Extract of Three Plants of Curcuma longae Radix, Phellinus linteus, and Scutellariae Radix Inhibits Amyloid $\beta$ Protein (25-35)-Induced Neurotoxicity in Cultured Neurons and Memory Impairment in Mice (Curcuma longae Radix, Phellinus linteus 및 Scutellariae Radix 혼합추출물의 $A{\beta}$ (25-35) 유도 배양신경세포독성 및 마우스기억손상 억제효과)

  • Kim, Joo-Youn;Jeong, Ha-Yeon;Ban, Ju-Yeon;Yoo, Jae-Kuk;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.388-396
    • /
    • 2009
  • The present study investigated an ethanol extract (HS0608) of a mixture of three medicinal plants of Curcuma longae radix, Phellinus linteus, and Scutellariae radix for possible neuroprotective effects on neurotoxicity induced by amyloid $\beta$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons and antidementia activity in mice. Exposure of cultured cortical neurons to $10\;{\mu}M$ $A{\beta}$ (25-35) for 36 h induced neuronal apoptotic death. At $1-50\;{\mu}g/m{\ell}$, HS0608 inhibited neuronal death, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) induced by $A{\beta}$ (25-35) in primary cultures of rat cortical neurons. Memory loss induced by intracerebroventricular injection of ICR mice with 15 nmol $A{\beta}$ (25-35) was inhibited by chronic treatment with HS0608 (25, 50 and 100 mg/kg, p.o. for 7 days) as measured by a passive avoidance test. From these results, we suggest that the antidementia effect of HS0608 is due to its neuroprotective effect against $A{\beta}$ (25-35)-induced neurotoxicity and that HS0608 may have a therapeutic role in preventing the progression of Alzheimer's disease.

Ginsenoside Rg3 enhances phagocytosis of microglia when activated by $\beta$-amyloid in rat primary culture

  • Joo, Seong-Soo;Kang, Hee-Chul;Hwang, Kwang-Woo;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.136.1-136.1
    • /
    • 2003
  • $\beta$-amyloid (A$\beta$) peptide produced from amyloid precursor protein (APP) is a major cause of Alzheimer's disease (AD). Therefore, in early phase of AD, imbalance of the production and the clearance of $A\beta$ is regarded as an important factor to progressive AD presenting senile plaque, a hallmark of AD. In the present study, we wanted to verify whether Rg3 can playa role in helping microglia engulfing $A\beta$ peptides. Validations for the study was conducted by using DiI-Ac-LDL, which attached only on type A macrophage scavenger receptor (MSR-A) and ligands for he receptor, fucoidan. (omitted)

  • PDF

Effects of fermented ginseng on memory impairment and β-amyloid reduction in Alzheimer's disease experimental models

  • Kim, Joonki;Kim, Sung Hun;Lee, Deuk-Sik;Lee, Dong-Jin;Kim, Soo-Hyun;Chung, Sungkwon;Yang, Hyun Ok
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.100-107
    • /
    • 2013
  • This study examined the effect of fermented ginseng (FG) on memory impairment and ${\beta}$-amyloid ($A{\beta}$) reduction in models of Alzheimer's disease (AD) in vitro and in vivo. FG extract was prepared by steaming and fermenting ginseng. In vitro assessment measured soluble $A{\beta}42$ levels in HeLa cells, which stably express the Swedish mutant form of amyloid precursor protein. After 8 h incubation with the FG extract, the level of soluble $A{\beta}42$ was reduced. For behavioral assessments, the passive avoidance test was used for the scopolamine-injected ICR mouse model, and the Morris water maze was used for a transgenic (TG) mouse model, which exhibits impaired memory function and increased $A{\beta}42$ level in the brain. FG extract was treated for 2 wk or 4 mo on ICR and TG mice, respectively. FG extract treatment resulted in a significant recovery of memory function in both animal models. Brain soluble $A{\beta}42$ levels measured from the cerebral cortex of TG mice were significantly reduced by the FG extract treatment. These findings suggest that FG extract can protect the brain from increased levels of $A{\beta}42$ protein, which results in enhanced behavioral memory function, thus, suggesting that FG extract may be an effective preventive or treatment for AD.