• Title/Summary/Keyword: Amplitude Dependence

Search Result 117, Processing Time 0.027 seconds

CORRELATION FUNCTIONS OF THE APM CLUSTERS OF GALAXIES

  • PARK CHANGBOM;LEE SUNGHO
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.2
    • /
    • pp.105-108
    • /
    • 1998
  • We have found that the two-point correlation function of the APM clusters of galaxies has an amplitude much higher than that claimed by the APM group. As the richness limit increases from R = 53 to 80, the correlation length increases from 17.5 to 28.9 $h^{-1}Mpc$. This indicates that the richness dependence of the APM cluster correlation function is also much stronger than what the APM group has reported. The richness dependence can be represented by a fitting formula ro = 0.53dc + 0.01, which is consistent with the Bahcall's formula ro = 0.4dc. We have tried to find the possible reason for discrepancies. However, our estimates for the APM cluster correlation function are found to be robust against variation of the method of calculation and of sample definition.

  • PDF

Nonlinear Tuned Mass Damper for self-excited oscillations

  • Gattulli, Vincenzo;Di Fabio, Franco;Luongo, Angelo
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.251-264
    • /
    • 2004
  • The effects of a class of nonlinear Tuned Mass Dampers on the aeroelastic behavior of SDOF systems are investigated. Unlike classical linear TMDs, nonlinear constitutive laws of the internal damping acting between the primary oscillator and the TMD are considered, while the elastic properties are keept linear. The perturbative Multiple Scale Method is applied to derive a set of bifurcation equations in the amplitude and phase and a parametric analysis is performed to describe the postcritical scenario of the system. Both cubic- and van der Pol-type dampings are considered and the dependence of the limit-cycle amplitudes on the system parameters is studied. These new results, compared with the previously obtained bifurcation scenario of a SDOF aeroelastic oscillator equipped with a linear TMD, show a detrimental effect on the maximum limit-cycle amplitude reduction of the nonlinear TMD. However, the analyses evidence that in the parameter region away from the perfect tuning condition the nonlinear connection can be used to tune the system with an enhancement of the limit-cycle amplitude reduction.

NUMERICAL STUDY OF THE SLOSHING PHENOMENON IN THE 2-DIMENSIONAL RECTANGULAR TANK WITH VARIABLE FREQUENCY AT A LOW FILLING LEVEL (가진 주파수에 따른 이차원 사각탱크 내부의 슬로싱에 관한 수치적 연구)

  • Jung, J.H.;Lee, C.Y.;Yoon, H.S.;Kim, H.J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.16-25
    • /
    • 2015
  • The present study investigates the sloshing phenomena in a two-dimensional rectangular tank at a low filling level by using a level set method based on finite volume method. The code validations are performed by comparing between the present results and previous numerical and experimental results, which gives a good agreement. Various excitation frequencies and excitation amplitude of the 30% filling height tank have been considered in order to observe the dependence of the sloshing behavior on the excitation frequency and amplitude. Regardless of excitation amplitude, the maximum value of wall pressure occurs when the excitation frequency reaches the natural frequency. The time sequence of free surface and corresponding streamlines for excitation frequencies have been presented to analysis the variation of wall pressure according to time, which contributes to explain the double peaks in the time variation of wall pressure.

Applicability Evaluation of Modified Overlay Model on the Cyclic Behavior of 316L Stainless Steel at Room Temperature (316L 스테인리스강의 상온 반복 거동에 대한 수정 다층 모델의 적용성 검토)

  • Lim Jae-Yong;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1603-1611
    • /
    • 2004
  • The validity of 'modified overlay model' to describe the cyclic behavior of annealed 316L stainless steel at room temperature was investigated. Material parameters(~f$_{i}$, m$_{i}$b, η, E) fur the model were obtained through constant strain amplitude test. The strain amplitude dependency of elastic limit and cyclic hardening, which were the characteristics of this model, were considered. Eight subelements were used to describe the nonlinearity of the hysteresis loops. The calculated hysteresis curve in each condition (0.5%, 0.7%, 0.9% train amplitude test) was very close to the experimental one. Two tests, incremental step test and 5-step test, ere performed to check the validity of 'modified overlay model'. The elastic limit was saturated to the one of the highest strain amplitudes of the block in the incremental step test, so it seemed to be Masing material at the stabilized block. Cyclic hardening was successfully described in the increasing sequence of the strain amplitude in 5-step test. But, the slight cyclic softening followed by higher strain amplitude would not be able to simulate by'modified overlay model'. However, the discrepancy induced was very small between the calculated hystereses and the experimental ones. In conclusion,'Modified overlay model'was proved to be appropriate in strain range of 0.35%~ 1.0%..0%.

Effects of oscillation parameters on aerodynamic behavior of a rectangular 5:1 cylinder near resonance frequency

  • Pengcheng Zou;Shuyang Cao;Jinxin Cao
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.59-74
    • /
    • 2024
  • Large Eddy Simulation (LES) is used to explore the influence of vibration frequency and amplitude on the aerodynamic performance of a rectangular cylinder with an aspect ratio of B/D=5 (B: breadth; D: depth of cylinder) at a Reynolds number of 22,000 near resonance frequency. In smooth flow conditions, the research employs a sequence of three-dimensional simulations under forced vibration with diverse frequency ratios fe / fo = 0.8-1.2 (fe : oscillation frequency; fo : Strouhal frequency when the rectangular cylinder is stationary ) and oscillation amplitudes Ah/D = 0.05 - 0.3. The individual influences of fe / fo and Ah/D on the characteristics of integrated and distributed aerodynamic forces are the focal points of discussion. For the integrated aerodynamic force, particular emphasis is placed on the analysis of the dependence of velocity-proportional component C1 and displacement-proportional component C2 of unsteady aerodynamic force on amplitude and frequency ratio. Near the resonance frequency, the dependencies of C1 and C2 on amplitude are stronger than that of frequency ratio. For the distributed aerodynamic force, the increase in frequency and amplitude promotes the position of the main vortex core and reattachment to the leading edge in the streamwise direction. In the spanwise direction, vibration enhances the spanwise correlation of aerodynamic force to weaken the three-dimensional effect of the flow field, and a lower frequency ratio and larger amplitude amplify this effect.

QUANTUM GRAPH OF SIERPINSKI GASKET TYPE IN ELECTRIC FIELD

  • Blinova, Irina V.;Popov, Igor Y.
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.263-275
    • /
    • 2016
  • Quantum graph of Sierpinski gasket type with attached leads in an electric eld is considered. We study the dependence of the transmission coecient via the wave number of the quantum particle. It has strongly resonance character. The in uence of the amplitude and the orientation of the electric eld on the coecient is investigated.

The critical behaviors of resistivity in nickel films

  • Sik, Gil-Woo;Rhee Ilsu
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.1 no.1
    • /
    • pp.13-18
    • /
    • 1997
  • The critical phenomena in nickel films have been studied by observing the resistivity behavior with temperatures near the Curie point. We observed the thickness dependence of the Curie point in nickel films, that is, the thinner the film is, the lower the Curie point is. This is as expected. Using the heat capacity data, we also found the amplitude ratios of bulk and film systems to be 1.222 and 1.197(average0, respectively. These values are cose to the theoretical prediction of 1.46 given by the Heisenberg, S=$\infty$ Model.

Ultrasonic Backscattering on Painted Rough Surface at near Rayleigh Angle (레일리각 근처에서 도색된 거친 표면으로부터 후방 산란된 초음파)

  • Kwon, Sung-D.;Kwon, Yong-G.;Yoon, Seok-S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • The angular dependence (or profile) of backscattered ultrasound was measured for steel specimens with a range of surface roughness, $1{\sim}71{\mu}m$. Backscattering profiles at or near the Rayleigh angle still showed roughness dependence while the assessment of surface roughness via normal profile became impossible due to the paint layer masking the roughness. The peak amplitude directly radiated at the Rayleigh angle was proportional to the surface roughness, while the averaged peak amplitude radiated from the backward propagating Rayleigh wave, produced by reflection at a corner, was inversely proportional. In the painted specimens, the linearity of direct backward radiation with the roughness was observed even at the roughness of less than three hundredths of a wavelength, and the abnormal multiple bark reflection caused by periodic roughness disappeared.

CORRELATION FUNCTIONS OF THE ABELL, APM, AND X-RAY CLUSTERS OF GALAXIES

  • LEE SUNGHO;PARK CHANGBOM
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.3
    • /
    • pp.111-121
    • /
    • 2002
  • We have measured the correlation functions of the optically selected clusters of galaxies in the Abell and the APM catalogs, and of the X-ray clusters in the X-ray-Brightest Abell-type Clusters of galaxies (XBACs) catalog and the Brightest Clusters Sample (BCS). The same analysis method and the same method of characterizing the resulting correlation functions are applied to all observational samples. We have found that the amplitude of the correlation function of the APM clusters is much higher than what has been previously claimed, in particular for richer subsamples. The correlation length of the APM clusters with the richness R $\ge$ 70 (as defined by the APM team) is found to be $r_0 = 25.4_{-3.0}^{+3.1}\;h^{-1}$ Mpc. The amplitude of correlation function is about 2.4 times higher than that of Croft et al. (1997). The correlation lengths of the Abell clusters with the richness class RC $\ge$ 0 and 1 are measured to be $r_0 = 17.4_{-1.1}^{+1.2}$ and $21.0_{-2.8}^{+2.8}\;h^{-1}$ Mpc, respectively, which is consistent with our results for the APM sample at the similar level of richness. The richness dependence of cluster correlations is found to be $r_0= 0.40d_c + 3.2$ where $d_c$ is the mean intercluster separation. This is identical in slope with the Bahcall & West (1992)'s estimate, but is inconsistent with the weak dependence of Croft et al. (1997). The X-ray bright Abell clusters in the XBACs catalog and the X-ray selected clusters in the BCS catalog show strong clustering. The correlation length of the XBACs clusters with $L_x {\ge}0.65{\times} 10^{44}\;h^{-2}erg\;s^{-1}$ is $30.3_{-6.5}^{+8.2}\;h^{-1}$ Mpc, and that of the BCS clusters with $L_x {\ge}0.70{\times} 10^{44}\;h^{-2}erg\;s^{-1}$ is $30.2_{-8.9}^{+9.8}\;h^{-1}$ Mpc. The clustering strength of the X-ray clusters is much weaker than what is expected from the optical clusters.

Nonmigrating tidal characteristics in the thermospheric neutral mass density

  • Kwak, Young-Sil;Kil, Hyosub;Lee, Woo-Kyoung;Oh, Seung-Jun;Yang, Tae-Yong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.125.1-125.1
    • /
    • 2012
  • The wave number 4 (wave-4) and wave number 3 (wave-3) longitudinal structures in the thermospheric neutral mass density are understood as tidal structures driven by diurnal eastward-propagating zonal wave number 3 (DE3) and wave number 2 (DE2) tides, respectively. However, those structures have been identified using data from limited time periods, and the consistency and recurrence of those structures have not yet been examined using long-term observation data. We examine the persistence of those structures by analyzing the neutral mass density data for the years 2001-2008 taken by the CHAllenging Minisatellite Payload (CHAMP) satellite. During years of low solar activity, the amplitude of the wave-4 structure is pronounced during August and September, and the wave-4 phase shows a consistent eastward phase progression of $90^{\circ}$ within 24 h local time in different months and years. During years of high solar activity, the wave-4 amplitude is small and does not show a distinctive annual pattern, but the tendency of the eastward phase shift at a rate of $90^{\circ}$/24 h exists. Thus the DE3 signature in the wave-4 structure is considered as a persistent feature. The wave-3 structure is a weak feature in most months and years. The amplitude and phase of the wave-3 structure do not show a notable solar cycle dependence. Among the contributing tidal modes to the wave-3 structure, the DE2 amplitude is most pronounced. This result may suggest that the DE2 signature, although it is a weak signature, is a perceivable persistent feature in the thermosphere.

  • PDF