Browse > Article
http://dx.doi.org/10.4134/CKMS.2016.31.2.263

QUANTUM GRAPH OF SIERPINSKI GASKET TYPE IN ELECTRIC FIELD  

Blinova, Irina V. (ITMO University)
Popov, Igor Y. (ITMO University)
Publication Information
Communications of the Korean Mathematical Society / v.31, no.2, 2016 , pp. 263-275 More about this Journal
Abstract
Quantum graph of Sierpinski gasket type with attached leads in an electric eld is considered. We study the dependence of the transmission coecient via the wave number of the quantum particle. It has strongly resonance character. The in uence of the amplitude and the orientation of the electric eld on the coecient is investigated.
Keywords
quantum graph; Sierpinski gasket; transmission;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Ben-Bassat, R. S. Strichartz, and A. Teplyaev, What is not in the domain of the Laplacian on Sierpinski gasket type fractals, J. Funct. Anal. 166 (1999), no. 2, 197-217.   DOI
2 I. V. Blinova, I. Yu. Popov, and M. M. Sandler, Quantum graph of Sierpinski gasket type: computational experiment, Russ. J. Math. Phys. 14 (2007), no. 4, 338-396.
3 A. N. Bondarenko and V. A. Dedok, Spectral surgery of quantum graphs, Sib. Xh. Ind. Mat. 7 (2004), no. 4, 16-28.
4 P. Exner, Leaky quantum graphs: a review, Analysis on graphs and its applications, 523-564, Proc. Sympos. Pure Math., 77, Amer. Math. Soc., Providence, RI, 2008.
5 Y. Higuchi and T. Shirai, The spectrum of magnetic Schrodinger operators on a graph with periodic structure, J. Funct. Anal. 169 (1999), no. 2, 456-480.   DOI
6 J. Kigami, A harmonic calculus on the Sierpinski spaces, Japan J. Indust. Appl. Math. 6 (1989), no. 2, 259-290.
7 J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335 (1993), no. 2, 721-755.   DOI
8 J. Kigami, Analysis on Fractals, Cambridge, Cambridge University Press. 2001.
9 A. Kusuoka, A diffusion process on a fractal, Probabilistic methods in mathematical physics (Katata/Kyoto, 1985), 251-274, Academic Press, Boston, MA, 1987.
10 L. D. Landau and E. M. Lifshits, Quantum Mechanics (non-relativistic theory), 4th Ed. Moscow, Nauka, 1989.
11 I. S. Lobanov and I. Yu. Popov, Scattering by a junction of zig-zag and armchair nanotubes, Nanosystems: Physics, Chemistry, Mathematics 3 (2012), no. 2, 6-28.
12 B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Company; 1st edition, 1982.
13 I. Yu. Popov and S. L. Popova, On the mesoscopic gate, Acta Phys. Polonica A. 88 (1995), no. 6, 1113-1117.   DOI
14 G. Tanner, The autocorrelation function for spectral determinants of quantum graphs, J. Phys. A 35 (2002), no. 29, 5985-5995.   DOI
15 A. Teplyaev, Spectral Analysis on In nite Sierpinski Gaskets, J. Funct. Anal. 159 (1998), no. 2, 537-567.   DOI