1 |
O. Ben-Bassat, R. S. Strichartz, and A. Teplyaev, What is not in the domain of the Laplacian on Sierpinski gasket type fractals, J. Funct. Anal. 166 (1999), no. 2, 197-217.
DOI
|
2 |
I. V. Blinova, I. Yu. Popov, and M. M. Sandler, Quantum graph of Sierpinski gasket type: computational experiment, Russ. J. Math. Phys. 14 (2007), no. 4, 338-396.
|
3 |
A. N. Bondarenko and V. A. Dedok, Spectral surgery of quantum graphs, Sib. Xh. Ind. Mat. 7 (2004), no. 4, 16-28.
|
4 |
P. Exner, Leaky quantum graphs: a review, Analysis on graphs and its applications, 523-564, Proc. Sympos. Pure Math., 77, Amer. Math. Soc., Providence, RI, 2008.
|
5 |
Y. Higuchi and T. Shirai, The spectrum of magnetic Schrodinger operators on a graph with periodic structure, J. Funct. Anal. 169 (1999), no. 2, 456-480.
DOI
|
6 |
J. Kigami, A harmonic calculus on the Sierpinski spaces, Japan J. Indust. Appl. Math. 6 (1989), no. 2, 259-290.
|
7 |
J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335 (1993), no. 2, 721-755.
DOI
|
8 |
J. Kigami, Analysis on Fractals, Cambridge, Cambridge University Press. 2001.
|
9 |
A. Kusuoka, A diffusion process on a fractal, Probabilistic methods in mathematical physics (Katata/Kyoto, 1985), 251-274, Academic Press, Boston, MA, 1987.
|
10 |
L. D. Landau and E. M. Lifshits, Quantum Mechanics (non-relativistic theory), 4th Ed. Moscow, Nauka, 1989.
|
11 |
I. S. Lobanov and I. Yu. Popov, Scattering by a junction of zig-zag and armchair nanotubes, Nanosystems: Physics, Chemistry, Mathematics 3 (2012), no. 2, 6-28.
|
12 |
B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Company; 1st edition, 1982.
|
13 |
I. Yu. Popov and S. L. Popova, On the mesoscopic gate, Acta Phys. Polonica A. 88 (1995), no. 6, 1113-1117.
DOI
|
14 |
G. Tanner, The autocorrelation function for spectral determinants of quantum graphs, J. Phys. A 35 (2002), no. 29, 5985-5995.
DOI
|
15 |
A. Teplyaev, Spectral Analysis on Innite Sierpinski Gaskets, J. Funct. Anal. 159 (1998), no. 2, 537-567.
DOI
|