• Title/Summary/Keyword: Amplify-and-forward relay

Search Result 135, Processing Time 0.029 seconds

Capacity Optimization of Two-way Amplify-and Forward Relay Networks (Two-way 증폭과 전송 릴레이 네트워크의 용량 최적화)

  • Hanif, Mohammad Abu;Lee, Moon Ho;Park, Ju Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • In this paper, we propose a pilot based channel estimation technique in two-way relay networks. We propose to transmit a pilot symbol together with the data symbol during transmission. In absence of Channel State Information (CSI), destination uses the pilot symbol to estimate the channel. In this system, the relay amplifies the pilot and the data symbol then forward them to the destination using amplify and forward (AF) protocol. We assume that the relay gain is fixed, so the relay does not need to estimate the channel, the destination only estimate the channel. We apply well-known Least-square (LS) and minimum mean-square error (MMSE) channel estimation methods to estimate the channel.

Performance Analysis of Amplify-and-Forward Relaying in Cooperative Networks with Partial Relay Selection (부분 중계노드 선택 기반의 협력 네트워크에서 증폭 후 전송 방식에 대한 성능분석)

  • Hwang, Ho-seon;Ahn, Kyung-seung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2317-2323
    • /
    • 2015
  • In this paper, we analyze the performance of dual-hop amplify-and-forward (AF) relaying in cooperative networks with partial relay selection. An AF relay gain considered in this paper includes channel-noise-assisted relay gain. Leveraging a received signal-to-noise ratio (SNR) model, we derive exact closed-form expressions for the probability density function (pdf) and cumulative distribution function (cdf) of the end-to-end SNR. Moreover, an exact closed-form expression of the ergodic capacity for dual-hop AF relaying with channel-noise-assisted relay gain and partial relay selection is investigated. The analytical results shown in this paper are confirmed by Monte-Carlo simulations.

Performance Analysis of Amplify and Forward (AF)-based Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Khan, Muhammad Sajjad;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.223-228
    • /
    • 2013
  • Cognitive radio has been recently considered a promising technology to improve spectrum utilization by enabling secondary access to licensed bands that are not used by primary users temporarily or spatially. A prerequisite to this secondary access is the lack of interference to the primary system. This requirement makes spectrum sensing a key process for cognitive radio. In this study, we consider amplify and forward (AF)-based cooperative spectrum sensing for cognitive radio networks where multiple relay nodes are utilized to amplify and forward the primary user signal for better spectrum sensing, and maximum ratio combining is used for fusion detection by a cognitive coordinator. Further, the detection probability and the bit error rate of AF-based cooperative spectrum sensing are analyzed in fading multiple cognitive relay channels. The simulation results show that the AF-based cooperative spectrum sensing scheme outperforms the conventional scheme.

Performance Analysis of Hybrid Decode-Amplify-Forward Incremental Relaying Cooperative Diversity Protocol Using SNR-Based Relay Selection

  • Tran, Trung Duy;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.703-709
    • /
    • 2012
  • In this paper, we propose a hybrid decode-amplify-forward incremental cooperative diversity protocol using SNR-based relay selection. In the proposed protocol, whenever destination unsuccessfully receives the source's signal, one of relays that exploit hybrid decode-amplify-forward technique is chosen to retransmit the signal. We derive approximate closed-form expressions of outage probability and average channel capacity. Monte-Carlo simulations are presented to verify the theoretical results and compare the performance of the proposed protocol with the direct transmission protocol and conventional incremental relaying protocols.

Secrecy Performance of Secure Amplify-and-Forward Transmission with Multi-Antenna Relay (다중 안테나 릴레이 기반의 Secure Amplifyand-Forward 전송 시스템의 보안 성능 분석)

  • Hwang, Kyu-Sung;Ju, MinChul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.733-738
    • /
    • 2013
  • In this paper, we consider a physical layer security of an amplify-and-forward (AF) transmission in a presence of an eavesdropper in a wiretap channel. The proposed wiretap channel consists of a source, a destination, a relay, and an eavesdropper. Specifically, we consider that the relay has multiple antennas to exploit a diversity gain and a receive/transmit antenna selection schemes are applied to maximize a signal-to-noise ratio. In a practical point of view, we focus on the practical scenario where the relay does not have any channel state information of the eavesdropper while performing an AF protocol at the relay. For a secrecy performance analysis, we analyze a secrecy outage probability of the proposed system in one-integral form and verify our analysis with the computer-based simulation.

Optimal Power Splitting for Wireless Energy and Information Transfer in Amplify-and-Forward Two-Way Relaying (증폭-후-전달 양방향 릴레이에서 무선 에너지 정보 전송을 위한 최적 전력 분할)

  • Do, Thinh Phu;Kim, Yun Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.175-177
    • /
    • 2016
  • This letter considers wireless energy and information transfer for an amplify-and-forward two-way relay network. When the relay harvests the energy and transfers the information signal through power splitting, the optimal power splitting minimizing the outage probability is derived explicitly and its gain is confirmed by simulations.

Outage Analysis of OFDM-Based Dual-hop Multi-Relay Systems with Best Relay Selection (최선 릴레이 선택을 적용한 OFDM 기반 이중-홉 다중 릴레이 시스템의 아웃티지 성능 분석)

  • Park, Jae-Cheol;Wang, Jin-Soo;Lee, Ji-Hye;Kim, Yun-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.487-494
    • /
    • 2010
  • This paper presents an OFDM-based dual-hop multi-relay system with best relay selection maximizing the mutual information. For the system either with decode-and-forward (DF) relays or with amplify-and-forward (AF) relays, we derive a lower-bound on the outage probability and the diversity order achievable in frequency selective fading channels and provide the outage capacity from simulation. Performance evaluation shows that both DF and AF provide the same diversity order as in the lower-bound but DF of which the outage probability is much closer to the lower-bound provides a better outage capacity than AF. It is also observed that the SNR gain of DF over AF gets larger as either the number of resolvable multipaths or the number of relay candidates increases, which makes DF relaying more favorable to the OFDM-based multi-relay system.

Link Adaptation and Selection Method for OFDM Based Wireless Relay Networks

  • Can, Basak;Yomo, Hiroyuki;Carvalho, Elisabeth De
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.118-127
    • /
    • 2007
  • We propose a link adaptation and selection method for the links constituting an orthogonal frequency division multiplexing (OFDM) based wireless relay network. The proposed link adaptation and selection method selects the forwarding, modulation, and channel coding schemes providing the highest end-to-end throughput and decides whether to use the relay or not. The link adaptation and selection is done for each sub-channel based on instantaneous signal to interference plus noise ratio (SINR) conditions in the source-to-destination, source-to-relay and relay-to-destination links. The considered forwarding schemes are amplify and forward (AF) and simple adaptive decode and forward (DF). Efficient adaptive modulation and coding decision rules are provided for various relaying schemes. The proposed end-to-end link adaptation and selection method ensures that the end-to-end throughput is always larger than or equal to that of transmissions without relay and non-adaptive relayed transmissions. Our evaluations show that over the region where relaying improves the end-to-end throughput, the DF scheme provides significant throughput gain over the AF scheme provided that the error propagation is avoided via error detection techniques. We provide a frame structure to enable the proposed link adaptation and selection method for orthogonal frequency division multiple access (OFDMA)-time division duplex relay networks based on the IEEE 802.16e standard.

Performance Analysis of Full Duplex on-regenerative Relay

  • Ban, Tae-Won;Jung, Bang-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.647-651
    • /
    • 2011
  • In this letter, non-regenerative Amplify-and-Forward (AF) relay systems based on half and full duplex schemes are investigated and their performance is analyzed and compared in terms of outage probability. Although the AF relay systems have been widely investigated in many previous literatures, most of them adopted a half duplex scheme due to hardware limitation and mathematical tractability. To the best of our knowledge, this letter is the first study to investigate the performance of the full duplex AF relay system considering practical hardware limitations. In full duplex AF relay systems, it is important to secure the isolation between transmit and receive antennas. Our numerical and simulation results show that there exists a threshold point of the isolation gain that the full duplex relay system outperforms the half duplex relay system.

Optimal Amplify-and-Forward Scheme for Parallel Relay Networks with Correlated Relay Noise

  • Liu, Binyue;Yang, Ye
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.599-608
    • /
    • 2014
  • This paper studies a parallel relay network where the relays employ an amplify-and-forward (AF) relaying scheme and are subjected to individual power constraints. We consider correlated effective relay noise arising from practical scenarios when the relays are exposed to common interferers. Assuming that the noise covariance and the full channel state information are available, we investigate the problem of finding the optimal AF scheme in terms of maximum end-to-end transmission rate. It is shown that the maximization problem can be equivalently transformed to a convex semi-definite program, which can be efficiently solved. Then an upper bound on the maximum achievable AF rate of this network is provided to further evaluate the performance of the optimal AF scheme. It is proved that the upper bound can be asymptotically achieved in two special regimes when the transmit power of the source node or the relays is sufficiently large. Finally, both theoretical and numerical results are given to show that, on average, noise correlation is beneficial to the transmission rate - whether the relays know the noise covariance matrix or not.