• Title/Summary/Keyword: Amplification ratio

Search Result 210, Processing Time 0.032 seconds

Design of Multi-Phase Shift Controller for Valveless PZT Pump (밸브리스 압전펌프 연동구동 제어기 설계)

  • 조정대;박경민;노종호;함영복;유진산
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1282-1285
    • /
    • 2004
  • The high voltage driving system with multi-phase shifter including piezoelectric actuators comprised a driving power unit for outputting the driving power by converting input alternate current into direct current, a frequency shifting unit for supplying the direct current power and shifting or generating a frequency, a high-voltage amplification unit for amplifying the input signal outputted from the driving power unit and the frequency shifting unit into a high-voltage signal, and a phase shifting unit for shifting the phase difference of the amplified signal applied to the high-voltage amplification unit and driving plural piezoelectric actuators sequentially. The results that the operating voltage was stable, the voltage loss ratio was low and the response velocity was fast could be obtained. An experiment on performance of the high voltage driving system with multi-phase shifter designed and manufactured as above described was conducted by using a piezoelectric pump having 3 sheets of round unimorph piezoelectric actuators laminated respectively in a rectangular case. It sucks any fluid by causing the first piezoelectric actuator to shift from the inlet porter side, the phase delay of 60$^{\circ}$ causes the second piezoelectric actuator to begin to shift, and the phase delay of 120$^{\circ}$ causes the third piezoelectric actuator to begin to shift. As a result of measuring each change in the outlet flow rate of the piezoelectric pump, it was shown that the frequency-flow rate characteristic, the voltage-flow characteristic, and the load pressure-flow rate characteristic were improved.

  • PDF

Ethidium monoazide-PCR for the detection of viable Escherichia coli in aquatic environments (수환경에서 살아 있는 대장균의 검출을 위한 ethidium monoazide-중합효소연쇄반응법)

  • Lee, Gyucheol;Kim, Hyunjeong;Lee, Byunggi;Kwon, Soonbok;Kim, Gidon;Lee, Sangtae;Lee, Chanhee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.199-205
    • /
    • 2009
  • It is very important to differentiate of DNA derived from live or dead bacteria within mixed microbial communities in aquatic environments. Ethidium monoazide (EMA) is a DNA intercalating agent and the treatment of EMA with strong visible light cleaves the genomic DNA of bacteria. In dead bacterial cells, EMA intercalates into the genomic DNA, induces the cleavage of DNA, and inhibits the PCR amplification. In this study, we developed the EMA-PCR and EMA real-time PCR to detect the DNA derived from viable Escherichia coli (E.coli) in mixed cultures of live and dead E.coli. The treatment of EMA, $50{\mu}g/mL$, and 650 W visible halogen light exposure for 2 minutes cleaved the genomic DNA derived from heat killed E.coli but did not those of live E.coli. EMA-PCR could detect the DNA from live E.coli in mixed culture samples of live and dead E.coli at various ratio and there was no DNA amplification in only dead E.coli cultures. Similar results were observed in EMA real-time PCR. Further studies are needed to develop various EMA-PCR methods to detect viable waterborne pathogens such as Helicobacter pylori, Giardia lamblia, and so on.

Elastic floor response spectra of nonlinear frame structures subjected to forward-directivity pulses of near-fault records

  • Kanee, Ali Reza Taghavee;Kani, Iradj Mahmood Zadeh;Noorzad, Assadollah
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.49-65
    • /
    • 2013
  • This article presents the statistical characteristics of elastic floor acceleration spectra that represent the peak response demand of non-structural components attached to a nonlinear supporting frame. For this purpose, a set of stiff and flexible general moment resisting frames with periods of 0.3-3.6 sec. are analyzed using forty-nine near-field strong ground motion records. Peak accelerations are derived for each single degree of freedom non-structural component, supported by the above mentioned frames, through a direct-integration time-history analysis. These accelerations are obtained by Floor Acceleration Response Spectrum (FARS) method. They are statistically analyzed in the next step to achieve a better understanding of their height-wise distributions. The factors that affect FARS values are found in the relevant state of the art. Here, they are summarized to evaluate the amplification and/or reduction of FARS values especially when the supporting structures undergo inelastic behavior. The properties of FARS values are studied in three regions: long-period, fundamental-period and short-period. Maximum elastic acceleration response of non-structural component, mounted on inelastic frames, depends on the following factors: inelasticity intensity and modal periods of supporting structure; natural period, damping ratio and location of non-structural component. The FARS values, corresponded to the modal periods of supporting structure, are strongly reduced beyond elastic domain. However, they could be amplified in the transferring period domain between the mentioned modal periods. In the next step, the amplification and/or reduction of FARS values, caused by inelastic behavior of supporting structure, are calculated. A parameter called the response acceleration reduction factor ($R_{acc}$), has been previously used for far-field earthquakes. The feasibility of extending this parameter for near-field motions is focused here, suggested repeatedly in the relevant sources. The nonlinearity of supporting structure is included in ($R_{acc}$) for better estimation of maximum non-structural component absolute acceleration demand, which is ordinarily neglected in the seismic design provisions.

Experimental study on models of cylindrical steel tanks under mining tremors and moderate earthquakes

  • Burkacki, Daniel;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.175-189
    • /
    • 2019
  • The aim of the study is to show the results of complex shaking table experimental investigation focused on the response of two models of cylindrical steel tanks under mining tremors and moderate earthquakes, including the aspects of diagnosis of structural damage. Firstly, the impact and the sweep-sine tests have been carried out, so as to determine the dynamic properties of models filled with different levels of liquid. Then, the models have been subjected to seismic and paraseismic excitations. Finally, one fully filled structure has been tested after introducing two different types of damages, so as to verify the method of damage diagnosis. The results of the impact and the sweep-sine tests show that filling the models with liquid leads to substantial reduction in natural frequencies, due to gradually increasing overall mass. Moreover, the results of sweep-sine tests clearly indicate that the increase in the liquid level results in significant increase in the damping structural ratio, which is the effect of damping properties of liquid due to its sloshing. The results of seismic and paraseismic tests indicate that filling the tank with liquid leads initially to considerable reduction in values of acceleration (damping effect of liquid sloshing); however, beyond a certain level of water filling, this regularity is inverted and acceleration values increase (effect of increasing total mass of the structure). Moreover, comparison of the responses under mining tremors and moderate earthquakes indicate that the power amplification factor of the mining tremors may be larger than the seismic power amplification factor. Finally, the results of damage diagnosis of fully filled steel tank model indicate that the forms of the Fourier spectra, together with the frequency and power spectral density values, can be directly related to the specific type of structural damage. They show a decrease in the natural frequencies for the model with unscrewed support bolts (global type of damage), while cutting the welds (local type of damage) has resulted in significant increase in values of the power spectral density for higher vibration modes.

Application study of PCR additives to improve the split peaks in direct PCR

  • Kim, Joo-Young;Kim, Da-Hye;Park, Hyun-Chul;Jung, Ju Yeon;Jin, Gang-Nam;Hwang, In-Kwan;Kang, Pil-Won
    • Analytical Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.155-162
    • /
    • 2019
  • Analysis techniques using DNA profiling are widely used in various fields including forensic science and new technologies such as the Direct PCR amplification method are being developed continuously in order to acquire the DNA profiles efficiently. However, it has a limits such as non-specific amplification according to the quality of crime scene evidence samples. Especially, split peaks caused by excessive DNA samples are one of the important factors that could cause the debate to allow researchers to interpret the DNA profile results. In this study, we confirmed the occurrence rate of split peaks in each STR (short tandem repeats) locus of the $GlobalFiler^{TM}$ kit and investigated the possibility of improving the split peaks using several PCR additives such as DMSO (dimethylsulfoxide), $MgCl_2$, Betaine and Tween-20. As a result, we could make three groups according to the occurrence rate of split peaks in Direct PCR and it was confirmed that the ratio of split peaks could be reduced by DMSO (87.4 %), $MgCl_2$ (84.5 %) and Betaine (86.1 %), respectively. These results indicate that PCR additives such as DMSO, $MgCl_2$ and Betaine can be improve the split peaks in Direct PCR and thereby facilitate subsequently a successful DNA profile results.

A comparative study of the prevalence of Helicobacter pylori in the oral biofilms of a group of dental and non-dental undergraduates from Sri Lanka

  • Mallikaarachchi, MADKS;Rajapakse, Sanath;Gunawardhana, KSND;Jayatilake, JAMS
    • International Journal of Oral Biology
    • /
    • v.46 no.1
    • /
    • pp.60-65
    • /
    • 2021
  • Dental health care workers (DHCW) are at a risk of occupational exposure to Helicobacter pylori from the aerosolized oral biofilms and saliva of patients. We designed this study to investigate the prevalence of H. pylori in the oral biofilms of a group of dental and non-dental undergraduates from Sri Lanka. After obtaining informed consent, oral biofilms were collected from 38 dental undergraduates (19 males and 19 females) undergoing clinical training and 33 non-dental undergraduates (14 males and 19 females). The participants were in the age range of 22-27 years and had healthy periodontium. Total DNA from the oral biofilms were extracted, and H. pylori DNA was detected using polymerase chain reaction (PCR) amplification of 16S rRNA gene of H. pylori using JW22-JW23 primers, and the results were confirmed using PCR amplification of H. pylori-urease specific HPU1-HPU2 primers. Out of 71 participants, 11 (28.95%) dental and 3 (9.09%) non-dental undergraduates had H. pylori in their oral biofilms indicating an overall prevalence rate of 19.72% (14/71). Thus, the prevalence of H. pylori in oral biofilms was significantly higher in dental undergraduates than in non-dental undergraduates (p < 0.05). An odds ratio of 4.07 indicated that dental undergraduates were four times more likely to harbor H. pylori in their oral biofilms than non-dental undergraduates. Foregoing data support the fact that there may be greater occupational risk of exposure to H. pylori for dental undergraduates during clinical training than that for non-dental undergraduates, warranting meticulous infection control practices during clinical dentistry.

Spatial Variation Characteristics of Seismic Motions through Analysis of Earthquake Records at Fukushima Nuclear Power Plant (후쿠시마 원자력발전소 지진 계측 기록 분석을 통한 지진파의 공간적 변화 특성 평가)

  • Ha, Jeong-Gon;Kim, Mi Rae;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.223-232
    • /
    • 2021
  • The spatial variation characteristics of seismic motions at the nuclear power plant's site and structures were analyzed using earthquake records obtained at the Fukushima nuclear power plant during the Great East Japan Earthquake. The ground responses amplified as they approached the soil surface from the lower rock surface, and the amplification occurred intensively at about 50 m near the ground. Due to the soil layer's nonlinear characteristics caused by the strong seismic motion, the ground's natural frequency derived from the response spectrum ratio appeared to be smaller than that calculated from the shear wave velocity profile. The spatial variation of the peak ground acceleration at the ground surface of the power plant site showed a significant difference of about 0.6 g at the maximum. As a result of comparing the response spectrums at the basement of the structure with the design response spectrum, there was a large variability by each power plant unit. The difference was more significant in the Fukushima Daiichi site record, which showed larger peak ground acceleration at the surface. The earthquake motions input to the basement of the structure amplified according to the structure's height. The natural frequency obtained from the recorded results was lower than that indicated in the previous research. Also, the floor response spectrum change according to the location at the same height was investigated. The vertical response on the foundation surface showed a significant difference in spectral acceleration depending on the location. The amplified response in the structure showed a different variability depending on the type of structure and the target frequency.

Effects of ground motion scaling on nonlinear higher mode building response

  • Wood, R.L.;Hutchinson, T.C.
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.869-887
    • /
    • 2012
  • Ground motion scaling techniques are actively debated in the earthquake engineering community. Considerations such as what amplitude, over what period range and to what target spectrum are amongst the questions of practical importance. In this paper, the effect of various ground motion scaling approaches are explored using three reinforced concrete prototypical building models of 8, 12 and 20 stories designed to respond nonlinearly under a design level earthquake event in the seismically active Southern California region. Twenty-one recorded earthquake motions are selected using a probabilistic seismic hazard analysis and subsequently scaled using four different strategies. These motions are subsequently compared to spectrally compatible motions. The nonlinear response of a planar frameidealized building is evaluated in terms of plasticity distribution, floor level acceleration and uncorrelated acceleration amplification ratio distributions; and interstory drift distributions. The most pronounced response variability observed in association with the scaling method is the extent of higher mode participation in the nonlinear demands.

A Study on the Thermal Characteristics of a $MgO/H_2O$ Chemical Heat Pump ($MgO/H_2O$ 계 화학식 열펌프의 열적 특성에 관한 연구)

  • ;;;;Yukitaka Kato
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.34-41
    • /
    • 2004
  • The chemical heat pump based on the Dehydration/Hydration process with a MgO/$H_2O$ system has been researched. The reactor bed could be expected to store the heat around 200∼37$0^{\circ}C$ by the dehydration reaction and to release the heat around 100∼16$0^{\circ}C$ by the hydration reaction under the heat amplification mode operation. The heat output rate of the heat pump system was evaluated using the experimentally determined parameters. The results show that 6∼50 W/kg of heat output and 0.5∼0.8 of heat recovery ratio are attainable. The heat pump will be applicable for a load leveling in a co-generation system by chemical storage of surplus heat at low heat demand and by supplying heat in the peak load period.

Driving circuit of magnetoimpedance sensor using Instrumentation amplifier (계측증폭기를 이용한 자기임피던스센서의 구동회로)

  • Song, Jae-Yeon;Kim, Young-Hak;Shin, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.581-584
    • /
    • 2003
  • The phase differences and noise signals are in general serious on output of a instrumentation amplifier for signal conditioning of a sensor driven at high frequency due to a time-varying input signal. In this study, we get the better amplification and S/N ratio using the rectified signal for the input of instrumentation amplifier. This driving circuits were designed and constructed by OrCAD and laboratory PCB process. All of the elements used on the circuit including highly speedy OP-Amp. was SMD type and the MI sensor was fabricated by meander-patterned amorphous ribbon. The output sensitivity of this circuit was $105.3mV/V{\cdot}Oe$. That's why this driving circuit is good at detection of fine magnetic field.

  • PDF