• 제목/요약/키워드: Amplicon Sequencing

검색결과 60건 처리시간 0.029초

토양미생물 생태 연구를 위한 증폭 파이로시퀀싱 기법의 응용 (Application of Amplicon Pyrosequencing in Soil Microbial Ecology)

  • 안재형;김병용;김대훈;송재경;원항연
    • 한국토양비료학회지
    • /
    • 제45권6호
    • /
    • pp.1073-1085
    • /
    • 2012
  • Soil microbial communities are immensely diverse and complex with respect to species richness and community size. These communities play essential roles in agricultural soil because they are responsible for most of the nutrient cycles in the soil and influence the plant diversity and productivity. However, the majority of these microbes remain uncharacterized because of poor culturability. Next-generation sequencing techniques have revolutionized many areas of biology by providing cheaper and faster alternatives to Sanger sequencing. Among them, amplicon pyrosequencing is a powerful tool developed by 454 Life Sciences for assessing the diversity of complex microbial communities by sequencing PCR products or amplicons. This review summarizes the current opinions in amplicon sequencing of soil microbial communities, and provides practical guidance and advice on sequence quality control, aligning, clustering, OTU- and taxon-based analysis. The last section of this article includes a few representative studies conducted using amplicon pyrosequencing.

Assessment of the gastrointestinal microbiota using 16S ribosomal RNA gene amplicon sequencing in ruminant nutrition

  • Minseok Kim
    • Animal Bioscience
    • /
    • 제36권2_spc호
    • /
    • pp.364-373
    • /
    • 2023
  • The gastrointestinal (GI) tract of ruminants contains diverse microbes that ferment various feeds ingested by animals to produce various fermentation products, such as volatile fatty acids. Fermentation products can affect animal performance, health, and well-being. Within the GI microbes, the ruminal microbes are highly diverse, greatly contribute to fermentation, and are the most important in ruminant nutrition. Although traditional cultivation methods provided knowledge of the metabolism of GI microbes, most of the GI microbes could not be cultured on standard culture media. By contrast, amplicon sequencing of 16S rRNA genes can be used to detect unculturable microbes. Using this approach, ruminant nutritionists and microbiologists have conducted a plethora of nutritional studies, many including dietary interventions, to improve fermentation efficiency and nutrient utilization, which has greatly expanded knowledge of the GI microbiota. This review addresses the GI content sampling method, 16S rRNA gene amplicon sequencing, and bioinformatics analysis and then discusses recent studies on the various factors, such as diet, breed, gender, animal performance, and heat stress, that influence the GI microbiota and thereby ruminant nutrition.

Exploring the Feasibility of 16S rRNA Short Amplicon Sequencing-Based Microbiota Analysis for Microbiological Safety Assessment of Raw Oyster

  • Jaeeun Kim;Byoung Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1162-1169
    • /
    • 2023
  • 16S rRNA short amplicon sequencing-based microbiota profiling has been thought of and suggested as a feasible method to assess food safety. However, even if a comprehensive microbial information can be obtained by microbiota profiling, it would not be necessarily sufficient for all circumstances. To prove this, the feasibility of the most widely used V3-V4 amplicon sequencing method for food safety assessment was examined here. We designed a pathogen (Vibrio parahaemolyticus) contamination and/or V. parahaemolyticus-specific phage treatment model of raw oysters under improper storage temperature and monitored their microbial structure changes. The samples stored at refrigerator temperature (negative control, NC) and those that were stored at room temperature without any treatment (no treatment, NT) were included as control groups. The profiling results revealed that no statistical difference exists between the NT group and the pathogen spiked- and/or phage treated-groups even when the bacterial composition was compared at the possible lowest-rank taxa, family/genus level. In the beta-diversity analysis, all the samples except the NC group formed one distinct cluster. Notably, the samples with pathogen and/or phage addition did not form each cluster even though the enumerated number of V. parahaemolyticus in those samples were extremely different. These discrepant results indicate that the feasibility of 16S rRNA short amplicon sequencing should not be overgeneralized in microbiological safety assessment of food samples, such as raw oyster.

A streamlined pipeline based on HmmUFOtu for microbial community profiling using 16S rRNA amplicon sequencing

  • Hyeonwoo Kim;Jiwon Kim;Ji Won Cho;Kwang-Sung Ahn;Dong-Il Park;Sangsoo Kim
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.40.1-40.11
    • /
    • 2023
  • Microbial community profiling using 16S rRNA amplicon sequencing allows for taxonomic characterization of diverse microorganisms. While amplicon sequence variant (ASV) methods are increasingly favored for their fine-grained resolution of sequence variants, they often discard substantial portions of sequencing reads during quality control, particularly in datasets with large number samples. We present a streamlined pipeline that integrates FastP for read trimming, HmmUFOtu for operational taxonomic units (OTU) clustering, Vsearch for chimera checking, and Kraken2 for taxonomic assignment. To assess the pipeline's performance, we reprocessed two published stool datasets of normal Korean populations: one with 890 and the other with 1,462 independent samples. In the first dataset, HmmUFOtu retained 93.2% of over 104 million read pairs after quality trimming, discarding chimeric or unclassifiable reads, while DADA2, a commonly used ASV method, retained only 44.6% of the reads. Nonetheless, both methods yielded qualitatively similar β-diversity plots. For the second dataset, HmmUFOtu retained 89.2% of read pairs, while DADA2 retained a mere 18.4% of the reads. HmmUFOtu, being a closed-reference clustering method, facilitates merging separately processed datasets, with shared OTUs between the two datasets exhibiting a correlation coefficient of 0.92 in total abundance (log scale). While the first two dimensions of the β-diversity plot exhibited a cohesive mixture of the two datasets, the third dimension revealed the presence of a batch effect. Our comparative evaluation of ASV and OTU methods within this streamlined pipeline provides valuable insights into their performance when processing large-scale microbial 16S rRNA amplicon sequencing data. The strengths of HmmUFOtu and its potential for dataset merging are highlighted.

외형 및 행동 습관 관련 50개 SNP 마커 분석을 위한 targeted amplicon next-generation sequencing 패널 개발 (Development of targeted amplicon next-generation sequencing panel of 50 SNPs related to externally visible characteristics and behavior)

  • 박희연;노윤지;김응수;박현철
    • 분석과학
    • /
    • 제37권3호
    • /
    • pp.189-199
    • /
    • 2024
  • 법유전학에서 개인의 신원확인을 위한 STR 프로필 분석이 불가한 경우, DNA를 이용한 외형추정특성을 이용하여 개인에 대한 정보를 얻을 수 있다. 최근 눈동자, 머리카락, 피부 색과 같은 외형추정특성을 확인하는 방법들이 연구되고 있지만, 이러한 외형추정특성 정보만 가지고는 한국을 비롯한 동아시아 지역에서 적용하기에는 한계가 있다. 본 연구에서는 개인의 외형과 관련된 표현형을 수사정보로서 활용하기 위해 눈 모양, 머리카락 굵기, 피부 색 뿐만 아니라 탈모, 체형, 고도근시, 얼굴모양, 여드름, 행동습관과 관련된 SNP를 탐색하였다. 이들 표현형과 관련된 50개의 SNP를 선정하여 한 번에 증폭할 수 있는 targeted amplicon NGS 방식의 multiplex PCR 패널을 개발하였다. 실험 결과 14개 샘플에서 50개 SNP의 대립유전자 유형과 빈도를 확인할 수 있었다. 향후 본 패널을 가지고 더 많은 샘플을 이용하여 유전형과 표현형 간 연관성 확인 및 결과 해석 방법을 분석할 예정이다.

Massive Parallel Sequencing for Diagnostic Genetic Testing of BRCA Genes - a Single Center Experience

  • Ermolenko, Natalya A;Boyarskikh, Uljana A;Kechin, Andrey A;Mazitova, Alexandra M;Khrapov, Evgeny A;Petrova, Valentina D;Lazarev, Alexandr F;Kushlinskii, Nikolay E;Filipenko, Maxim L
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권17호
    • /
    • pp.7935-7941
    • /
    • 2015
  • The aim of this study was to implement massive parallel sequencing (MPS) technology in clinical genetics testing. We developed and tested an amplicon-based method for resequencing the BRCA1 and BRCA2 genes on an Illumina MiSeq to identify disease-causing mutations in patients with hereditary breast or ovarian cancer (HBOC). The coding regions of BRCA1 and BRCA2 were resequenced in 96 HBOC patient DNA samples obtained from different sample types: peripheral blood leukocytes, whole blood drops dried on paper, and buccal wash epithelia. A total of 16 random DNA samples were characterized using standard Sanger sequencing and applied to optimize the variant calling process and evaluate the accuracy of the MPS-method. The best bioinformatics workflow included the filtration of variants using GATK with the following cut-offs: variant frequency >14%, coverage ($>25{\times}$) and presence in both the forward and reverse reads. The MPS method had 100% sensitivity and 94.4% specificity. Similar accuracy levels were achieved for DNA obtained from the different sample types. The workflow presented herein requires low amounts of DNA samples (170 ng) and is cost-effective due to the elimination of DNA and PCR product normalization steps.

Biphasic Study to Characterize Agricultural Biogas Plants by High-Throughput 16S rRNA Gene Amplicon Sequencing and Microscopic Analysis

  • Maus, Irena;Kim, Yong Sung;Wibberg, Daniel;Stolze, Yvonne;Off, Sandra;Antonczyk, Sebastian;Puhler, Alfred;Scherer, Paul;Schluter, Andreas
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권2호
    • /
    • pp.321-334
    • /
    • 2017
  • Process surveillance within agricultural biogas plants (BGPs) was concurrently studied by high-throughput 16S rRNA gene amplicon sequencing and an optimized quantitative microscopic fingerprinting (QMF) technique. In contrast to 16S rRNA gene amplicons, digitalized microscopy is a rapid and cost-effective method that facilitates enumeration and morphological differentiation of the most significant groups of methanogens regarding their shape and characteristic autofluorescent factor 420. Moreover, the fluorescence signal mirrors cell vitality. In this study, four different BGPs were investigated. The results indicated stable process performance in the mesophilic BGPs and in the thermophilic reactor. Bacterial subcommunity characterization revealed significant differences between the four BGPs. Most remarkably, the genera Defluviitoga and Halocella dominated the thermophilic bacterial subcommunity, whereas members of another taxon, Syntrophaceticus, were found to be abundant in the mesophilic BGP. The domain Archaea was dominated by the genus Methanoculleus in all four BGPs, followed by Methanosaeta in BGP1 and BGP3. In contrast, Methanothermobacter members were highly abundant in the thermophilic BGP4. Furthermore, a high consistency between the sequencing approach and the QMF method was shown, especially for the thermophilic BGP. The differences elucidated that using this biphasic approach for mesophilic BGPs provided novel insights regarding disaggregated single cells of Methanosarcina and Methanosaeta species. Both dominated the archaeal subcommunity and replaced coccoid Methanoculleus members belonging to the same group of Methanomicrobiales that have been frequently observed in similar BGPs. This work demonstrates that combining QMF and 16S rRNA gene amplicon sequencing is a complementary strategy to describe archaeal community structures within biogas processes.

Whole genome sequencing of foot-and-mouth disease virus using benchtop next generation sequencing (NGS) system

  • Moon, Sung-Hyun;Oh, Yeonsu;Tark, Dongseob;Cho, Ho-Seong
    • 한국동물위생학회지
    • /
    • 제42권4호
    • /
    • pp.297-300
    • /
    • 2019
  • In countries with FMD vaccination, as in Korea, typical clinical signs do not appear, and even in FMD positive cases, it is difficult to isolate the FMDV or obtain whole genome sequence. To overcome this problem, more rapid and simple NGS system is required to control FMD in Korea. FMDV (O/Boeun/ SKR/2017) RNA was extracted and sequenced using Ion Torrent's bench-top sequencer with amplicon panel with optimized bioinformatics pipelines. The whole genome sequencing of raw data generated data of 1,839,864 (mean read length 283 bp) reads comprising a total of 521,641,058 (≥Q20 475,327,721). Compared with FMDV (GenBank accession No. MG983730), the FMDV sequences in this study showed 99.83% nucleotide identity. Further study is needed to identify these differences. In this study, fast and robust methods for benchtop next generation sequencing (NGS) system was developed for analysis of Foot-and-mouth disease virus (FMDV) whole genome sequences.

Bioinformatic Suggestions on MiSeq-Based Microbial Community Analysis

  • Unno, Tatsuya
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권6호
    • /
    • pp.765-770
    • /
    • 2015
  • Recent sequencing technology development has revolutionized fields of microbial ecology. MiSeq-based microbial community analysis allows us to sequence more than a few hundred samples at a time, which is far more cost-effective than pyrosequencing. The approach, however, has not been preferably used owing to computational difficulties of processing huge amounts of data as well as known Illumina-derived artefact problems with amplicon sequencing. The choice of assembly software to take advantage of paired-end sequencing and methods to remove Illumina artefacts sequences are discussed. The protocol we suggest not only removed erroneous reads, but also dramatically reduced computational workload, which allows even a typical desktop computer to process a huge amount of sequence data generated with Illumina sequencers. We also developed a Web interface (http://biotech.jejunu.ac.kr/ ~abl/16s/) that allows users to conduct fastq-merging and mothur batch creation. The study presented here should provide technical advantages and supports in applying MiSeq-based microbial community analysis.

Type-specific Amplification of 5S rRNA from Panax ginseng Cultivars Using Touchdown (TD) PCR and Direct Sequencing

  • Sun, Hun;Wang, Hong-Tao;Kwon, Woo-Saeng;Kim, Yeon-Ju;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제33권1호
    • /
    • pp.55-58
    • /
    • 2009
  • Generally, the direct sequencing through PCR is faster, easier, cheaper, and more practical than clone sequencing. Frequently, standard PCR amplification is usually interpreted by mispriming internal or external regions of the target template. Normally, DNA fragments were eluted from the gel using Gel extraction kit and subjected to direct sequencing or cloning sequencing. Cloning sequencing has often troublesome and needs more time to analyze for many samples. Since touchdown (TD) PCR can generate sufficient and highly specific amplification, it reduces unwanted amplicon generation. Accordingly, TD PCR is a good method for direct sequencing due to amplifying wanted fragment. In plants the 5S-rRNA gene is separated by simple spacers. The 5S-rRNA gene sequence is very well-conserved between plant species while the spacer is species-specific. Therefore, the sequence has been used for phylogenetic studies and species identification. But frequent occurrences of spurious bands caused by complex genomes are encountered in the product spectrum of standard PCR amplification. In conclusion, the TD PCR method can be applied easily to amplify main 5S-rRNA and direct sequencing of panax ginseng cultivars.