• 제목/요약/키워드: Amperometric detection

Search Result 74, Processing Time 0.03 seconds

Highly Sensitive and Selective Glucose Sensor Realized by Conducting Polymer Modified Nanoporous PtZn Alloy Electrode

  • Jo, Hyejin;Piao, Hushan;Son, Yongkeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 2013
  • Platinum is a well known element which shows a significant electrocatalytic activity in many important applications. In glucose sensor, because of the poisoning effect of reaction intermediates and the low surface area, the electrocatalytic activity towards the glucose oxidation is low which cause the low sensitivity. So, we fabricate a nanoporous PtZn alloy electrode by deposition-dissolution method. It provides a high active surface and a large enzyme encapsulating space per unit area when it used for an enzymatic glucose sensor. Glucose oxidase was immobilized on the electrode surface by capping with PEDOT composite and PPDA. The composite and PPDA also can exclude the interference ion such as ascorbic acid and uric acid to improve the selectivity. The surface area was determined by cyclic voltametry method and the surface structure and the element were analyzed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX), respectively. The sensitivity is $13.5{\mu}A/mM\;cm^2$. It is a remarkable value with such simply prepared senor has high selectivity.

$H_2O_2$ Detection Property of Glucose Sensor using Self Assembled Viologen Modified Electrode as Mediator (Viologen 유도체를 전하전달체로 이용한 Glucose 센서의 $H_2O_2$ 검출 특성)

  • Lee, Dong-Yun;Choi, Won-Suk;Park, Sang-Hyun;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.86-87
    • /
    • 2007
  • An amperometric glucose biosensor has been developed using viologen derivatives as electron mediator of glucose oxidase (GOD) at Au electrode. Highly stable self assembled monolayer (SAM) of thiol-based viologen is immobilized onto the Au electrode followed byGOD is immobilized onto the viologen modified electrode. This biosensor response to glucose was evaluated amperometrically in the potential of -300 mV. Upon immobilization of glucose oxidase onto the viologen modified-electrode, the biosensor showed rapid response towards glucose. Experimental conditions influencing the biosensor performance such as, pH, potential were optimized and assessed. This biosensor offered an excellent electrochemical response for glucose concentration below ${\mu}mol$ level with high sensitivity and selectivity and short response time. The levels of the RSD's (< 5 %) for the entire analyses reflected the highly reproducible sensor performance. Using the optimized a linear relationship between current and glucose concentration was obtained up to $4.5{\times}10^{-4}$ M. In addition, this biosensor showed well reproducibility and stability.

  • PDF

Daily Amperometric Monitoring of Immunoglobulin E in a Mouse Whole Blood: Model of Ovalbumin Induced Asthma

  • Lee, Ju Kyung;Yoon, Sung-hoon;Kim, Sang Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • There is an increasing interest in monitoring of specific biomarker for determining progression of a disease or efficacy of a treatment. Conventional method for quantification of specific biomarkers as enzyme linked immunosorbent assay (ELISA) has high material costs, long incubation periods, requires large volume of samples and involves special instruments, which necessitates clinical samples to be sent to a lab. This paper reports on the development of an electrochemical biosensor to measure total immunoglobulin E (IgE), a marker of asthma disease that varies with age, gender, and disease in concentrations from 0.3-1000 ng/mL with consuming 20 µL volume of whole blood sample. The sensor provides rapid, accurate, easy, point-of-care measurement of IgE, also, sequential monitoring of total IgE with ovalbumin (OVA) induced mice is another application of sensor. Taken together, these results provide an alternative way for detection of biomarkers in whole blood with low volumes and long-term ex-vivo assessments for understanding the progression of a disease.

Determination of Ascorbic Acid, Acetaminophen, and Caffeine in Urine, Blood Serum by Electrochemical Sensor Based on ZnO-Zn2SnO4-SnO2 Nanocomposite and Graphene

  • Nikpanje, Elham;Bahmaei, Manochehr;Sharif, Amirabdolah Mehrdad
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.173-187
    • /
    • 2021
  • In the present research, a simple electrochemical sensor based on a carbon paste electrode (CPE) modified with ZnO-Zn2SnO4-SnO2 and graphene (ZnO-Zn2SnO4-SnO2/Gr/CPE) was developed for the direct, simultaneous and individual electrochemical measurement of Acetaminophen (AC), Caffeine (Caf) and Ascorbic acid (AA). The synthesized nano-materials were investigated using scanning electron microscopy, X-ray Diffraction, Fourier-transform infrared spectroscopy, and electrochemical impedance spectroscopy techniques. Cyclic voltammetry and differential pulse voltammetry were applied for electrochemical investigation ZnO-Zn2SnO4-SnO2/Gr/CPE, and the impact of scan rate and the concentration of H+ on the electrode's responses were investigated. The voltammograms showed a linear relationship between the response of the electrode for individual oxidation of AA, AC and, Caf in the range of 0.021-120, 0.018-85.3, and 0.02-97.51 μM with the detection limit of 8.94, 6.66 and 7.09 nM (S/N = 3), respectively. Also, the amperometric technique was applied for the measuring of the target molecules in the range of 0.013-16, 0.008-12 and, 0.01-14 μM for AA, AC and, Caf with the detection limit of 6.28, 3.64 and 3.85 nM, respectively. Besides, the ZnO-Zn2SnO4-SnO2/Gr/CPE shows an excellent selectivity, stability, repeatability, and reproducibility for the determination of AA, AC and, Caf. Finally, the proposed sensor was successfully used to show the amount of AA, AC and, Caf in urine, blood serum samples with recoveries ranging between 95.8% and 104.06%.

Portable Amperometric Perchlorate Selective Sensors with Microhole Array-water/organic Gel Interfaces

  • Lee, Sang Hyuk;Kim, Hyungi;Girault, Hubert H.;Lee, Hye Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2577-2582
    • /
    • 2013
  • A novel stick-shaped portable sensing device featuring a microhole array interface between the polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel and water phase was developed for in-situ sensing of perchlorate ions in real water samples. Perchlorate sensitive sensing responses were obtained based on measuring the current changes with respect to the assisted transfer reaction of perchlorate ions by a perchlorate selective ligand namely, bis(dibenzoylmethanato)Ni(II) (Ni(DBM)2) across the polarized microhole array interface. Cyclic voltammetry was used to characterize the assisted transfer reaction of perchlorate ions by the $Ni(DBM)_2$ ligand when using the portable sensing device. The current response for the transfer of perchlorate anions by $Ni(DBM)_2$ across the micro-water/gel interface linearly increased as a function of the perchlorate ion concentration. The technique of differential pulse stripping voltammetry was also utilized to improve the sensitivity of the perchlorate anion detection down to 10 ppb. This was acquired by preconcentrating perchlorate anions in the gel layer by means of holding the ion transfer potential at 0 mV (vs. Ag/AgCl) for 30 s followed by stripping the complexed perchlorate ion with the ligand. The effect of various potential interfering anions on the perchlorate sensor was also investigated and showed an excellent selectivity over $Br^-$, $NO_2{^-}$, $NO_3{^-}$, $CO{_3}^{2^-}$, $CH_3COO^-$ and $SO{_4}^{2^-}$ ions. As a final demonstration, some regional water samples from the Sincheon river in Daegu city were analyzed and the data was verified with that of ion chromatography (IC) analysis from one of the Korean-certified water quality evaluation centers.

Electrochemical Oxidation of Glucose at Nanoporous Gold Surfaces Prepared by Anodization in Carboxylic Acid Solutions (카복실산 용액에서 양극산화에 의해 형성된 나노다공성 금 표면상의 전기화학적 글루코오스 산화)

  • Roh, Seongjin;Jeong, Hwakyeung;Lee, Geumseop;Kim, Minju;Kim, Jongwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.74-80
    • /
    • 2013
  • We investigate the formation of nanoporous gold (NPG) surfaces by anodization in three carboxylic acid (formic acid, acetic acid, and propionic acid) solutions and the electrochemical oxidation of glucose at NPG surfaces. Among three carboxylic acids, formic acid provided the most efficient conditions for NPG formation towards glucose oxidation. The optimized conditions during anodization in formic acid for glucose oxidation were 5.0 V of applied potential and 4 hour of reaction time. Electrocatalytic activities for glucose oxidation at NPG surfaces prepared by anodization in carboxylic acids were examined under the absence and presence of chloride ions, which were compared to those observed at NPG prepared in oxalic acid solutions. The application NPG prepared by optimized anodization conditions in formic acid to the amperometric detection of glucose was demonstrated.

The Modified Electrode by PEDOP with MWCNTs-Palladium Nanoparticles for the Determination of hydroquinone and Catechol

  • Naranchimeg, Orogzodmaa;Kim, Seul-Ki;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2771-2775
    • /
    • 2011
  • Poly-ethylenedioxypyrrole (PEDOP) coated thiolated multiwall carbon nanotubes palladium nanoparticles (MWCNTs-Pd) modified glassy carbon electrode (GCE) [PEDOP/MWCNTs-Pd/GCE] for the determination of hydroquinone (HQ) and it’s isomer catechol (CA) were synthesized and compared with bare GCE and thiolated multiwall carbon nanotubes (MWCNTs-SH/GCE). The modification could be made by simple processes on a GCE with MWCNTs-Pd covered by PEDOP in a 0.05 M tetrabutylammonium perchlorate (TBAP)/MeCN solution system. A well-defined peak potential evaluation of the oxidation of hydroquinone to quinone at 0.05 V (vs. Ag/AgCl), and electrochemical reduction back to hydroquinone were found by cyclic voltammetry (CV) in phosphate buffered saline (PBS) at pH 7.4. Peak current values increased linearly with increasing hydroquinone contents. The peak separation between the anodic and cathodic peaks at the PEDOP/MWCNTs-Pd/GCE was ${\Delta}Ep$ = 40 mV for HQ and ${\Delta}Ep$ = 70 mV for CA, resulting in a higher electron transfer rate. Moreover, good reproducibility, excellent storage stability, a wide linear range (0.1 ${\mu}M$ - 5 mM for HQ and 0.01 ${\mu}M$ - 6 mM for CA), and low detection limits ($2.9{\times}10^{-8}$ M for HQ and $2.6{\times}10^{-8}$ M for CA; S/N = 3) were determined using differential pulse voltammetry (DPV) and amperometric responses; this makes it a promising candidate as a sensor for determination of HQ and CA.

Analysis of Low-level ${\alpha}$-D-glucose-1-phosphate in Thermophilic Enzyme Reaction Mixuture Using High pH Anion-exchange Chromatograph (고성능 액체 크로마토그래프를 이용한 내열성 효소반응 산물인 ${\alpha}$-D-glucose-1-phosphate의 저농도 분석)

  • 신현재;신영숙;이대실
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.384-388
    • /
    • 1999
  • We have used high pH anion-exchange chromatography to analyze low level (below $20{\mu}M$) $\alpha$-D-glucose-1-phosphate (G-1-P) that can be used as a cytostatic compound, an antibiotic, and immunosuppressive drug. Our chromatographic method afforded excellent peak resolution and seletivity for glucose-6-phosphate and various maltooligosaccharides as well as G-1-P. The pulsed amperometric detector yielded linear response on G-1-P ranging from 2 - $20{\mu}M$, giving slope of $4.8{\times}10^4$(peak area/${\mu}M$). The detection limit was $2{\mu}M$. This method was applied to the purification of thermophilic $\alpha$-glucan phosphorylase from Thermus caldophilus. The technique will be extremely useful in future studies concerning carbohydrate metabolism in living organisms.

  • PDF

Anticancer Activity of Sulfated Polysaccharides Isolated from the Antarctic Red Seaweed Iridaea cordata

  • Kim, Hak Jun;Kim, Woo Jung;Koo, Bon-Won;Kim, Dong-Woo;Lee, Jun Hyuck;Nugroho, Wahyu Sri Kunto
    • Ocean and Polar Research
    • /
    • v.38 no.2
    • /
    • pp.129-137
    • /
    • 2016
  • This study aimed to isolate and characterize sulfated polysaccharides (SPs) from Iridaea cordata and evaluate their anticancer activity. SPs of the Antarctic red seaweed were obtained by $CaCl_2$ (SP1) and ethanol precipitations (SP2) following diluted acid extraction at room temperature. Yields of SP1 and SP2 were approximately 14% and 23%, respectively, of the dry weight of red seaweed. The average molecular mass of the SP1 and SP2 was estimated about $1.84{\times}10^3$ and $1.42{\times}10^3kDa$, respectively, by size-fractionation High-Performance Liquid Chromatography (HPLC). From the High-Performance Anion-Exchange Chromatography-Pulsed Amperometric Detection (HPAEC-PAD) analysis, the main monosaccharide was galactose with glucose and fucose as minor components. The sulfate content of SP2 (40.4%) was slightly higher than that of SP1 (33.8%). The FT-IR spectra also showed characteristic band of carrageenan-like sulfated polysaccharides. Taken together the SPs are thought to be carrageenan-like sulfated galactan. The polysaccharides (SPs) from I. cordata exhibited weak antitumor activity against PC-3 (prostate cancer), HeLa (cervical cancer), and HT-29 (human colon adenocarcinoma). To our knowledge, this is the first data on biological activity of the Antarctic red seaweed I. cordata.

Electroanalytical Applications Based on Carbon Nanotube/Prussian Blue Screen-printable Composite

  • Shim, Jun-Ho;Lee, Jae-Seon;Cha, Geun-Sig;Nam, Hak-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1583-1588
    • /
    • 2010
  • A single step fabrication process of carbon nanotube/Prussian Blue (CNT/PB) paste electrodes based on screen printing technology has been studied as an amperometric sensor for the determination of hydrogen peroxide and free chlorine. Compared to the classical carbon paste (CP) electrode, the CNT paste electrode greatly enhanced the response in the presence of hydrogen peroxide due to the electrocatalytic activity of the CNT. Based on the CNT/binder paste, PB was also incorporated into a network of CNT paste and characterized. The best electroanalytical properties of PB-mixed sensors to hydrogen peroxide were obtained with PB ratio of 10 wt % composition, which showed fast response time ($t_{90}{\leq}5$ s; 0.2 - 0.3 mM), low detection limit of 1.0 ${\mu}M$, good linear response in the range from $5.0{\times}10^{-5}$ - $1.0{\times}10^{-3}$ mol $L^{-1}$ ($r^2$ = 0.9998), and high sensitivity of -8.21 ${\mu}AmM^{-1}$. In order to confirm the enhanced electrochemical properties of CNT/PB electrode, the sensor was further applied for the determination of chlorine in water, which exhibited a linear response behavior in the range of 50 - 2000 ppb for chlorine with a slope of 1.10 ${\mu}Appm^{-1}$ ($r^2$ = 9971).