• Title/Summary/Keyword: Amperometric Biosensor

Search Result 47, Processing Time 0.027 seconds

Daily Amperometric Monitoring of Immunoglobulin E in a Mouse Whole Blood: Model of Ovalbumin Induced Asthma

  • Lee, Ju Kyung;Yoon, Sung-hoon;Kim, Sang Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • There is an increasing interest in monitoring of specific biomarker for determining progression of a disease or efficacy of a treatment. Conventional method for quantification of specific biomarkers as enzyme linked immunosorbent assay (ELISA) has high material costs, long incubation periods, requires large volume of samples and involves special instruments, which necessitates clinical samples to be sent to a lab. This paper reports on the development of an electrochemical biosensor to measure total immunoglobulin E (IgE), a marker of asthma disease that varies with age, gender, and disease in concentrations from 0.3-1000 ng/mL with consuming 20 µL volume of whole blood sample. The sensor provides rapid, accurate, easy, point-of-care measurement of IgE, also, sequential monitoring of total IgE with ovalbumin (OVA) induced mice is another application of sensor. Taken together, these results provide an alternative way for detection of biomarkers in whole blood with low volumes and long-term ex-vivo assessments for understanding the progression of a disease.

Neuroprotective Effects by Nimodipine Treatment in the Experimental Global Ischemic Rat Model: Real Time Estimation of Glutamate

  • Choi, Seok-Keun;Lee, Gi-Ja;Choi, Sam-Jin;Kim, Youn-Jung;Park, Hun-Kuk;Park, Bong-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Objective: Glutamate is a key excitatory neurotransmitter in the brain, and its excessive release plays a key role in the development of neuronal injury. In order to define the effect of nimodipine on glutamate release, we monitored extracellular glutamate release in real-time in a global ischemia rat model with eleven vessel occlusion. Methods: Twelve rats were randomly divided into two groups: the ischemia group and the nimodipine treatment group. The changes of extracellular glutamate level were measured using microdialysis amperometric biosensor, in coincident with cerebral blood flow (CBF) and electroencephalogram. Nimodipine (0.025 ${\mu}g$/100 gm/min) was infused into lateral to the CBF probe, during the ischemic period. Also, we performed Nissl staining method to assess the neuroprotective effect of nimodipine. Results: During the ischemic period, the mean maximum change in glutamate concentration was $133.22{\pm}2.57\;{\mu}M$ in the ischemia group and $75.42{\pm}4.22\;{\mu}M$ (p<0.001) in the group treated with nimodipine. The total amount of glutamate released was significantly different (P<0.001) between groups during the ischemic period. The %cell viability in hippocampus was $47.50{\pm}5.64$ (p<0.005) in ischemia group, compared with sham group. But, the %cell viability in nimodipine treatment group was $95.46{\pm}6.60$ in hippocampus (p<0.005). Conclusion: From the real-time monitoring and Nissl staining results, we suggest that the nimodipine treatment is responsible for the protection of the neuronal cell death through the suppression of extracellular glutamate release in the 11-VO global ischemia model of rat.

The Effect of Extracellular Glutamate Release on Repetitive Transient Ischemic Injury in Global Ischemia Model

  • Lee, Gi-Ja;Choi, Seok-Keun;Eo, Yun-Hye;Kang, Sung-Wook;Choi, Sam-Jin;Park, Jeong-Hoon;Lim, Ji-Eun;Hong, Kyung-Won;Jin, Hyun-Seok;Oh, Berm-Seok;Park, Hun-Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.23-26
    • /
    • 2009
  • During operations, neurosurgeons usually perform multiple temporary occlusions of parental artery, possibly resulting in the neuronal damage. It is generally thought that neuronal damage by cerebral ischemia is associated with extracellular concentrations of the excitatory amino acids. In this study, we measured the dynamics of extracellular glutamate release in 11 vessel occlusion(VO) model to compare between single occlusion and repeated transient occlusions within short interval. Changes in cerebral blood flow were monitored by laser-Doppler flowmetry simultaneously with cortical glutamate level measured by amperometric biosensor. From real time monitoring of glutamate release in 11 VO model, the change of extracellular glutamate level in repeated transient occlusion group was smaller than that of single occlusion group, and the onset time of glutamate release in the second ischemic episode of repeated occlusion group was delayed compared to the first ischemic episode which was similar to that of single 10 min ischemic episode. These results suggested that repeated transient occlusion induces less glutamate release from neuronal cell than single occlusion, and the delayed onset time of glutamate release is attributed to endogeneous protective mechanism of ischemic tolerance.

Electrochemical Detection of Hydrogen Peroxide based on Hemoglobin-DNA/pyterpy Modified Gold Electrode (Hemoglobin-DNA/pyterpy 박막을 이용한 과산화수소의 전기화학적 검출)

  • Lee, Dong-Yun;Choi, Won-Suk;Park, Sang-Hyun;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1295-1296
    • /
    • 2008
  • Hydrogen peroxide ($H_2O_2$) biosensor is one of the most developing sensors because this kind of sensors is highly selective and responds quickly to the specific substrate. Hemoglobin (Hb) has been used as ideal biomolecules to construct hydrogen peroxide biosensors because of their high selectivity to $H_2O_2$. The direct electron transfer of Hb has widely investigated for application in the determination of $H_2O_2$ because of its simplicity, high selectivity and intrinsic sensitivity. An electrochemical detection for hydrogen peroxide was investigated based on immobilization of hemoglobin on DNA/Fe(pyterpy)$^{2+}$ modified gold electrode. The pyterpy monolayers were firstly an electron deposition onto the gold electrode surface of the quartz crystal microbalance (QCM). It is offered a template to attach negatively charged DNA. The fabrication process of the electrode was verified by quartz crystal analyzer (QCA). The experimental parameters such as pH, applied potential and amperometric response were evaluated and optimized. Under the optimized conditions, this sensor shows the linear response within the range between $3.0{\times}10^{-6}$ to $9.0{|times}10^{-4}$ M concentrations of $H_2O_2$. The detection limit was determined to be $9{\times}10^{-7}$ M (based on the S/N=3).

  • PDF

Study of Enzyme Immobilization on Composite of CTA and PCL Membrane for Biosensor (바이오센서용 CTA와 PCL 혼합막에의 효소고정화 기법의 개발)

  • 홍성현;김태진
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.468-474
    • /
    • 1995
  • The disposable glucose bio-sensor using composite of CTA and PCL membrane was developed for measurement of glucose. The most effective membrane was composed of CTA/PCL(80/20, w/w) and glutaraldehyde one-step immobilization method ($10{\mu}m$ thickness) for glucose sensor gave the best result among various methods, considering oxygen permeability and electronic sensitivity. A scanning electron micrograph of the cross-section of a typical asymmetric CTA/PCL composite membrane showed that the membrane fused with a dense layer covered with a GOD-glutaraldehyde. Glucose oxidase immoblilized on the membrane showed the linearity between difference of absolute amperometric values and glucose concentrations within 7mM when the GOD immobilized electrode was used. About 35% of activity was remained after 8 days when the tyrosinase was immobilized on CTA/PCL (80/20) membrane.

  • PDF

Real-Time Glutamate Release in Rat Striatum of 11-Vessel-Occlusion Ischemia Model Treated with Acupuncture (11개 혈관 차단법을 통한 중증 뇌경색 모델에서 뇌손상 측정과 침치료 효과 실시간 분석)

  • Yin, Chang-Shik;Choi, Seok-Keun;Lee, Gi-Ja;Eo, Yun-Hye;Kim, Bum-Shik;Oh, Berm-Seok;Lim, Ji-Eun;Lee, Hye-Jung;Park, Hun-Kuk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.835-840
    • /
    • 2008
  • Acupuncture has long been contended to be effective in an ischemic stroke. A real-time monitoring of glutamate, an excitotoxin in the process of ischemic neuronal damage, in the striatum is tried in a rat model of global ischemia. Global ischemia was induced by the 11 vessel occlusion method for 10 minutes, during which acupuncture stimulation on GB34 and GB39 points was executed. Glutamate release in the rat striatum was monitored 256 times per second using real-time amperometric biosensor. Real time measurement data of 10 minutes prior to the induction of ischemia served as baseline data. Data acquisition continued for 30 minutes after the initiation of reperfusion. Peak concentration of glutamate release along with incidentally measured EEG and cerebral blood flow was compared between cases with and without acupuncture stimulation. Peak concentration of glutamate lowered when acupuncture stimulation was executed. A real time monitoring system of 11 vessel-occlusion induced global ischemia model was successfully established. The effect by acupuncture on acute global ischemia was successfully observed in this real-time monitoring setting, which may be one of the neuroprotective mechanism of acupuncture.

Analysis of Amperometric Response to Cholesterol according to Enzyme-Immobilization Methods (효소고정화 방법에 따른 콜레스테롤 검출용 바이오센서의 전류 감응도 분석)

  • Ji, Jung-Youn;Kim, Mee-Ra
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.5
    • /
    • pp.731-738
    • /
    • 2011
  • Cholesterol is the precursor of various steroid hormones, bile acid, and vitamin D with functions related to regulation of membrane permeability and fluidity. However, the presence of excess blood cholesterol may lead to arteriosclerosis and hypertension. Moreover, dietary cholesterol may affect blood cholesterol levels. Generally, cholesterol determination is performed by spectrophotometric or chromatographic methods, but these methods are very time consuming and costly, and require complicated pretreatment. Thus, the development of a rapid and simple analysis method for measuring cholesterol concentration in food is needed. Multi-walled carbon nanotube (MWCNT) was functionalized to MWCNT-$NH_2$ via MWCNT-COOH to have high sensitivity to $H_2O_2$. The fabricated MWCNT-$NH_2$ was attached to a glassy carbon electrode (GCE), after which Prussian blue (PB) was coated onto MWCNT-$NH_2$/GCE. MWCNT-$NH_2$/PB/GCE was used as a working electrode. An Ag/AgCl electrode and Pt wire were used as a reference electrode and counter electrode, respectively. The sensitivity of the modified working electrode was determined based on the amount of current according to the concentration of $H_2O_2$. The response increased with an increase of $H_2O_2$ concentration in the range of 0.5~500 ${\mu}M$ ($r^2$=0.96) with a detection limit of 0.1 ${\mu}M$. Cholesterol oxidase was immobilized to aminopropyl glass beads, CNBr-activated sepharose, Na-alginate, and toyopearl beads. The immobilized enzyme reactors with aminopropyl glass beads and CNBr-activated sepharose showed linearity in the range of 1~100 ${\mu}M$ cholesterol. Na-alginate and toyopearl beads showed linearity in the range of 5~50 and 1~50 ${\mu}M$ cholesterol, respectively. The detection limit of all immobilized enzyme reactors was 1 ${\mu}M$. These enzyme reactors showed high sensitivity; especially, the enzyme reactors with CNBr-activated sepharose and Na-alginate indicated high coupling efficiency and sensitivity. Therefore, both of the enzyme reactors are more suitable for a cholesterol biosensor system.