• Title/Summary/Keyword: Amorphous materials

Search Result 1,757, Processing Time 0.024 seconds

ICOSAHEDRAL CLUSTERS AND MAGNETIC PROPERTIES OF $LaCo_{13}$ AMORPHOUS AND CRYSTALLINE ALLOYS

  • Fukamichi, K.;Fujita, A.;Ohashi, N.;Hashimoto, M.;Matsubara, E.;Waseda, Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.767-771
    • /
    • 1995
  • The atomic structure and magnetic properties of $LaCo_{13}$ amorphous alloy have been investigated and compared with those of its crystalline counterpart. It has been confirmed that the amorphous alloy is composed of the icosahedral clusters with a $NaZn_{13}$-type structure. The magnetic moment and the spin- wave stiffness constant obtained from the magnetic measurements in the amorphous state are larger than those in the crystalline state. The Curie temperature estimated from the reduced magnetization curve for the former is much higher than the value for the latter. The localized magnetic moment character in the amorphous state is stronger than that in the crystalline state.

  • PDF

Plasticity of Amorphous Alloys: 2. Inhomogeneous Deformation (비정질 합금의 소성 2: 불균일변형)

  • Park, Kyoung-Won;Lee, Chang-Myeon;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.773-785
    • /
    • 2009
  • Studies of a number of Cu-Zr amorphous alloys have demonstrated that those exhibiting greater plastic strain during homogeneous deformation at room temperature show lower global plasticity associated with inhomogeneous deformation in a typical compression test. Using a combination of experiments and molecular dynamics simulations, we clarify this seeming paradox between the homogeneous and inhomogeneous deformation by exploring the microstructural aspects in view of the structural disordering, disorder-induced softening, and shear localization and relate these findings to the global plasticity of bulk amorphous alloys. Additional analyses were conducted to derive a simple structural parameter that allows the prediction of the global plasticity of bulk amorphous alloys.

Recent Research on Photosensitive Amorphous Materials for Optical Devices

  • Nishii, Junji
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2000.05a
    • /
    • pp.77-85
    • /
    • 2000
  • Photosensitive amorphous materials are attractive for the formation of several optical elements by a specific laser beam irradiation. For example the optical fiber gratings prepared by UV laser irradiation are one of the key elements for the recent worldwide progress of wavelength division mutiplexing optical fiber network. This paper reviews the representative studies on the photosensitive materials and the origin of photosensitivity in amorphous oxide materials.

  • PDF

Deformation of Amorphous GeSe2 Film under Uniaxial Pressure Applied at Elevated Temperatures

  • Jin, Byeong Kyou;Lee, Jun Ho;Yi, Jeong Han;Lee, Woo Hyung;Shin, Sang Yeol;Choi, Yong Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.108-113
    • /
    • 2015
  • In an effort to evaluate the practicability of an imprinting technique for amorphous chalcogenide film in Ge-based compositions, we investigate the deformation behavior of the surface of amorphous $GeSe_2$ film deposited via a thermal evaporation route according to varying static loads applied at elevated temperatures. We observe that, under these static loading conditions, crystallization tends to occur on its surface relatively more easily than in As-based $As_2Se_3$ films. As for the present $GeSe_2$ film, higher processing temperatures are required in order to make its surface reflect the given stamp patterns well; however, in this case, its surface becomes partially crystallized in the monoclinic $GeSe_2$ phase. The increased vulnerability of this amorphous $GeSe_2$ film toward surface crystallization under static loading, when compared with the $As_2Se_3$ counterpart, is explained in terms of the topological aspects of its amorphous structure.

Synthesis of Amorphous Matrix Nano-composite in Al-Cu-Mg Alloy

  • Kim, Kang Cheol;Park, Sung Hyun;Na, Min Young;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.105-109
    • /
    • 2014
  • The microstructure of as-quenched $Al_{70}Cu_{18}Mg_{12}$ alloy has been investigated in detail using transmission electron microscopy. Al nano-crystals about 5 nm with a high density are distributed in the amorphous matrix, indicating amorphous matrix nano-composite can be synthesized in Al-Cu-Mg alloy. The high density of Al nano-crystals indicates very high nucleation rate and sluggish growth rate during crystallization possibly due to limited diffusion rate of solute atoms of Cu and Mg during solute partitioning. The result of hardness measurement shows that the mechanical properties can be improved by designing a nano-composite structure where nanometer scale crystals are embedded in the amorphous matrix.

Microfracture Behavior of Metallic-Continuous-Fiber-Reinforced Amorphous Matrix Composites Fabricated by Liquid Pressing Process (액상가압공정으로 제조된 금속 연속섬유강화 비정질 복합재료의 미세파괴거동)

  • Lee, Kyuhong;Lee, Sang-Bok;Lee, Sang-Kwan;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.524-537
    • /
    • 2008
  • Zr-based amorphous alloy matrix composites reinforced with metallic continuous fibers were fabricated by liquid pressing process, and their fracture properties were investigated by directly observing microfracture process using an in situ loading stage installed inside a scanning electron microscope chamber. About 60 vol.% of metallic fibers were homogeneously distributed inside the amorphous matrix. Apparent fracture toughness of the stainless-steel- and tungsten-fiber-reinforced composites was lower than that of monolithic amorphous alloy, while that of the Ta-fiber-reinforced composite was higher. According to the microfracture observation, shear bands or cracks were initiated at the amorphous matrix, and the propagation of the initiated shear bands or cracks was effectively blocked by fibers, thereby resulting in stable crack growth which could be confirmed by the fracture resistance curve (R-curve) behavior. This increase in fracture resistance with increasing crack length improved fracture properties of the fiber-reinforced composites, and could be explained by mechanisms of formation of multiple shear bands or multiple cracks at the amorphous matrix and blocking of crack or shear band propagation and multiple necking at metallic fibers.

Effects of Metalloid Elements on the Mechanical Properties of Fe-Based Bulk Amorphous Alloys

  • Kim, Yongchan;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.671-675
    • /
    • 2016
  • In this study, the glass-forming ability and mechanical properties of newly developed Fe-Mn-Cr-Mo-B-C-P-Si-Al bulk amorphous alloys were investigated, and metalloid elements such as B, C, and P were found to have a strong influence on the properties of the Fe-based amorphous alloys. When the total metalloid content (B, C, and P) is less than 5 %, only the crystal phase is formed, but the addition of more than 10 % metalloid elements enhances the glass forming ability. In particular, the alloys with 10 % metalloid content exhibit the best combination of very high compressive strength (~2.8 GPa) and superior fracture elongation (~30 %) because they consist of crystal/amorphous composite phases.

Finite Element Analysis for forming of bulk amorphous materials (벌크 아몰퍼스 성형의 유한요소 해석)

  • Yoon, S.H.;Go, H.K.;Kim, Y.I.;Lee, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1804-1809
    • /
    • 2003
  • The purpose of this study is to clarify the bulk/sheet forming characteristics of bulk amorphous alloys in the supercooled liquid state. The temperature dependences of Newtonian viscosities of amorphous materials are obtained based on the previous experimental works. Finite element analyses for compression forming and sheet deep drawing of amorphous materials are performed. Effects of friction coefficients and temperature are examined and formability of amorphous material is explained in detail.

  • PDF

The Effect of Geometric Shape of Amorphous Silicon on the MILC Growth Rate (MILC 성장 속도에 비정질 실리콘의 기하학적 형상이 미치는 영향)

  • Kim Young-Su;Kim Min-Sun;Joo Seung-Ki
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.477-481
    • /
    • 2004
  • High quality polycrystalline silicon is very critical part of the high quality thin film transistor(TFT) for display devices. Metal induced lateral crystallization(MILC) is one of the most successful technologies to crystallize the amorphous silicon at low temperature(below $550^{\circ}C$) and uses conventional and large glass substrate. In this study, we observed that the MILC behavior changed with abrupt variation of the amorphous silicon active pattern width. We explained these phenomena with the novel MILC mechanism model. The 10 nm thick Ni layers were deposited on the glass substrate having various amorphous silicon patterns. Then, we annealed the sample at $550^{\circ}C$ with rapid thermal annealing(RTA) apparatus and measured the crystallized length by optical microscope. When MILC progress from narrow-width-area(the width was $w_2$) to wide-width-area(the width was $w_1$), the MILC rate decreased dramatically and was not changed for several hours(incubation time). Also the incubation time increased as the ratio, $w_1/w_2$, get larger. We can explain these phenomena with the tensile stress that was caused by volume shrinkage due to the phase transformation from amorphous silicon to crystalline silicon.

Consolidation of Bulk Metallic Glass Composites

  • Lee, Jin-Kyu;Kim, Hwi-Jun;Kim, Taek-Soo;Shin, Seung-Yong;Bae, Jung-Chan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.848-849
    • /
    • 2006
  • Bulk metallic glass (BMG) composites combining a $Cu_{54}Ni_6Zr_{22}Ti_{18}$ matrix with brass powders or $Zr_{62}A_{l8}Ni_{13}Cu_{17}$ metallic glass powders were fabricated by spark plasma sintering. The brass powders and Zr-based metallic glass powders added for the enhancement of plasticity are well distributed homogeneously in the Cu-based metallic glass matrix after consolidation. The BMG composites show macroscopic plasticity after yielding, and the plastic strain increased to around 2% without a decrease in strength for the composite material containing 20 vol% Zr-based amorphous powders. The proper combination of strength and plasticity in the BMG composites was obtained by introducing a second phase in the metallic glass matrix.

  • PDF