• 제목/요약/키워드: Amorphous carbon film

검색결과 142건 처리시간 0.025초

비정질 탄소박막의 광발열 특성 연구 (Photothermal characteristics of amorphous carbon thin films)

  • 오현곤;조경아;김상식
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.213-215
    • /
    • 2018
  • 본 연구에서는 실리콘 기판 위에 DC 스퍼터링 방법을 이용하여 비정질 탄소박막을 제작하고, 흡광특성과 광발열 특성을 조사하였다. 비정질 탄소박막은 1000 nm 파장에서 97%의 흡광도를 보였으며, 백색광이 조사됨에 따라 비정질 탄소박막의 온도는 $21.1^{\circ}C$에서 $24.1^{\circ}C$로 상승하여 약 $3^{\circ}C$의 온도가 증가하였다. 또한, 백색광이 50초 동안 조사되는 동안 비정질 탄소박막에서는 기판에 비해 4배 빠른 온도상승속도로 온도가 증가하였다.

FVA 증착법에 의해 합성된 ta-C 박막의 구조 및 물성 제어 (The control of the structure and properties of tetrahedral amorphous carbon films prepared by Filtered Vacuum Arc)

  • 이철승;신진국;김종국;이광렬;윤기현
    • 한국진공학회지
    • /
    • 제11권1호
    • /
    • pp.8-15
    • /
    • 2002
  • 진공 여과 음극 아크(Filtered Vacuum cathodic Arc, FVA) 증착법을 이용하여 초경질 다이아몬드상 카본 박막(tetrahedral amorphous carbon, ta-C)을 합성하였다. FVA 증착법은 이온화율이 높고, 치밀한 다이아몬드상 카본 박막 증착에 적당한 이온 에너지를 갖는 등의 장점을 갖고 있다. 하지만, 이때의 카본 이온 에너지는 아크 소스의 조작만으로는 쉽게 조절되지 못한다는 단점을 갖고 있다. 다양한 물성 조절을 위해, 본 연구에서는 기판에 바이어스 전압을 인가하여 ta-C박막의 기계적 물성을 제어하였다. 기판의 바이어스 전압이 증가함에 따라, 기계적 물성 및 밀도는 바이어스 전압이 -100 V인 경우에 최대값을 보였다. 최대 경도값 및 밀도는 각각 55$\pm$3 GPa, 3.6$\pm$0.4 g/㎤로 이는 RF PACVD나 이온빔으로 증착되는 DLC의 3~5배에 이르는 값이다. 조성 및 구조 분석은 Raman spectroscopy와 NEXAFS spectroscopy를 이용하여 조사하였다. 각 바이어스 전압에 따른 박막의 물성 변화는 박막내의 $sp^2$$sp^3$ 혼성결합 분율의 변화의 관점으로 이해할 수 있었다.

The Effect of Hydrogen on the Tribological Properties of Hydrogenated Amorphous Carbon Films

  • Shin, Jong-Han;Lim, Dae-Soon
    • The Korean Journal of Ceramics
    • /
    • 제3권2호
    • /
    • pp.96-100
    • /
    • 1997
  • Hydrogenated amorphous carbon films were deposited on silicon substrates by using an RF PECVD. The hydrogen/methane ratio was varied from 50% to 88% to study the effect of hytdrogen in the film on the tribological properties. The friction and wear behaviors of the deposited films were investigated by ball-on-disk type wear tester. FT-IR spectra were used to characterize the structure of the films. Tribological properties of carbon films were correlated with their structure such as ratio of "polymer-like" stretching type and that of sp2 bonding. The result showed that the annealing caused a decrease in the amount of wear of contacted $Si_3N_4$ balls and a increase in the coefficient of friction. Possible explanation for annealing effect was discussed by the hydrogen desorption.esorption.

  • PDF

Effects of High Neutral Beam Energy on the Properties of Amorphous Carbon Films

  • 이동혁;장진녕;권광호;유석재;이봉주;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.477-477
    • /
    • 2012
  • The effects of argon neutral beam (NB) energy on the amorphous carbon (a-C) films were investigated, while the a-C films were deposited by neutral particle beam assisted sputtering (NBAS) system. The deposition characteristics of these films were studied as a function of NB energy (or reflector bias voltage). The film structures were investigated by Raman spectroscopy. The hardness was measured by nano-indentation tests and the optical band gap was measured by UV-visible spectroscopy.

  • PDF

플라즈마 질화처리한 사출금형소재의 비정질 탄소계 박막 증착에 따른 기계적 특성 향상 효과 (The effect of mechanical properties of carbon-based thin film on plasma nitrided injection mold steel )

  • 김혜민;김대욱
    • 한국표면공학회지
    • /
    • 제56권5호
    • /
    • pp.328-334
    • /
    • 2023
  • The carbon-based films have various properties, which have been widely applied in industrial application. However, it has critical drawback for poor adhesion between films and metal substrate. In the present work, we have deposited carbon-based films on injection mold steel by plasma assisted chemical vapor deposition (PACVD). In order to improve adhesion, prior to film deposition, the substrate was nitriding-treated using PACVD. And its effect on the adhesion was investigated. Due to the pre-nitriding, the amorphous carbon nitride (a-CN:H) films presented 10 times higher adhesion (34.9 N) than that of un-nitirided. In addition, a friction coefficient was decreased from 0.29 to 0.15 for the amorphous carbon (a-C:H) due to improved adhesion. The obtained results demonstrated that pre-nitriding considerably improved the adhesion, and the relationship among adhesion, hardness, and surface roughness was discussed in detail.

RF-PECVD에 의해 증착된 a-C:H 박막의 물리적 및 전기적 특성 분석 (Physical and electrical properties of a-C:H deposited by RF-PECVD)

  • 김인준;김용탁;최원석;윤대호;홍병유
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.296-300
    • /
    • 2002
  • Thin films of Hydrogenated amorphous carbon(a-C:H) are generally exhibited by high electrical resistivities from 10$^2$ to 10$\^$16/ Ω$.$cm, resulting in an interesting material for high power, high temperature MIS devices applications. The hydrogenated amorphous carbon(a-C:H) films were deposited on silicon and glass using an rf plasma enhanced CVD method. The resultant film properties were evaluated in the respect of material based on r.f. power variation. The hydrogenated amorphous carbon(a-C:H) films of thickness ranging from 30 to 50 m were deposited at the pressure of 1 ton with the mixture of methane and hydrogen. We have used rf-IR( courier transform IR) and AFM(Atomic force microscopy) for determining physical properties and current-voltage(I-V) measurement for electrical Properties.

  • PDF

레이저 층착법에 의한 비정질 탄소계 박막의 제작 (Fabrication of amorphous carbon thin film using laser ablation technique)

  • 류정탁;김연보;조경제
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.484-487
    • /
    • 2001
  • Amorphous carbon thin films were deposited using laser ablation technique on Si(100) substrates at different temperatures. In this study, effects of the substrate temperature on the properties of amorphous carbon films were systematically investigated. The surface morphologic and structural properties of the films were studied by scanning electron microscopy (SEM) and raman spectroscope, respectively. With increasing of the substrate temperature, the surface morphologies were changed singnificantly. Moreover the intensity ratio of D-band and G-band and the full width at half maximum of these bands were dependent on substrate temperatures.

  • PDF

Influence of Neutral Particle Beam Energy on the Structural Properties of Amorphous Carbon Films Prepared by Neutral Particle Beam Assisted Sputtering

  • 이동혁;장진녕;권광호;유석재;이봉주;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.194-194
    • /
    • 2011
  • The effects of argon neutral beam (NB) energy on the amorphous carbon (a-C) films were investigated, while the a-C films were deposited by neutral particle beam assisted sputtering (NBAS) system. The energy of neutral particle beam can be controlled by reflector bias voltage directly as a unique operating parameter in this system. The deposition characteristics of the films investigated of Raman spectra, UV-visible spectroscopy, electrical conductivity, stress measurement system, and ellipsometer indicate the properties of amorphous carbon films can be manipulated by only NB energy (or reflector bias voltage) without changing any other process parameters. We report the effect of reflector bias voltage in the range from 0 to -1KV. By the increase of the reflector bias voltage, the amount of cross-linked sp2 clusters as well as the sp3 bonding in the a-C film coated by the NBAS system can be increased effectively and the composition of carbon thin films can be changed from nano-crystalline graphite phase to amorphous carbon phase.

  • PDF

탄소계 경질 박막의 연구 및 산업 적용 동향 (Trend in Research and Application of Hard Carbon-based Thin Films)

  • 이경황;박종원;양지훈;정재인
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF

MEMS 적용을 위한 비정질 상 탄소박막의 나노 스케일 마찰력 특성연구 (A study on nano-scale friction of hydrogenated amorphous carbon for application in MEMS)

  • 고명균;박종완
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1211-1214
    • /
    • 2003
  • The film is prepared by electron cyclotron resonance chemical vapor deposition (ECRCVD) employing CH$_4$ and H$_2$ gases. It is deposited by the control of microwave plasma power, gas flow ratio, deposition pressure, and In-situ thermal treatment temperature. The structure of a-C:H (hydrogenated amorphous carbon) thin film is analysed by FT-IR spectroscopy. The fraction sp$^3$ versus sp$^2$ bonding is very important to clear up the surface and interrace of a-C:H film properties such as nano-scale friction behavior. The sp$^3$ versus sp$^2$ bonding of a-C:H thin film is dependent on the deposition conditions, therefore. nano-scale friction behavior is dependent on the deposition conditions.

  • PDF