• Title/Summary/Keyword: Amorphous Thin-Film Solar Cell

Search Result 80, Processing Time 0.027 seconds

Evaluation of Solar Cell Properties of Poly-Si Thin Film Fabricated with Novel Process Conditions for Solid Phase Crystallization (고상 결정화법을 위한 새로운 공정조건으로 제작된 다결정 Si 박막의 태양전지 특성 평가)

  • Kweon, Soon-Yong;Jeong, Ji-Hyun;Tao, Yuguo;Varlamov, Sergey
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.766-772
    • /
    • 2011
  • Amorphous Si (a-Si) thin films of $p^+/p^-/n^+$ were deposited on $Si_3N_4$/glass substrate by using a plasma enhanced chemical vapor deposition (PECVD) method. These films were annealed at various temperatures and for various times by using a rapid thermal process (RTP) equipment. This step was added before the main thermal treatment to make the nuclei in the a-Si thin film for reducing the process time of the crystallization. The main heat treatment for the crystallization was performed at the same condition of $600^{\circ}C$/18 h in conventional furnace. The open-circuit voltages ($V_{oc}$) were remained about 450 mV up to the nucleation condition of 16min in the nucleation RTP temperature of $680^{\circ}C$. It meat that the process time for the crystallization step could be reduced by adding the nucleation step without decreasing the electrical property of the thin film Si for the solar cell application.

Metal-induced Crystallization of Amorphous Ge on Glass Synthesized by Combination of PIII&D and HIPIMS Process

  • Jeon, Jun-Hong;Kim, Eun-Kyeom;Choi, Jin-Young;Park, Won-Woong;Moon, Sun-Woo;Lim, Sang-Ho;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.144-144
    • /
    • 2012
  • 최근 폴리머를 기판으로 하는 고속 Flexible TFT (Thin film transistor)나 고효율의 박막 태양전지(Thin film solar cell)를 실현시키기 위해 낮은 비저항(resistivity)을 가지며, 높은 홀 속도(carrier hall mobility)와 긴 이동거리를 가지는 다결정 반도체 박막(poly-crystalline semiconductor thin film)을 만들고자 하고 있다. 지금까지 다결정 박막 반도체를 만들기 위해서는 비교적 높은 온도에서 장시간의 열처리가 필요했으며, 이는 폴리머 기판의 문제점을 야기시킬 뿐 아니라 공정시간이 길다는 단점이 있었다. 이에 반도체 박막의 재결정화 온도를 낮추어 주는 metal (Al, Ni, Co, Cu, Ag, Pd, etc.)을 이용하여 결정화시키는 방법(MIC)이 많이 연구되어지고 있지만, 이 또한 재결정화가 이루어진 반도체 박막 안에 잔류 금속(residual metal)이 존재하게 되어 비저항을 높이고, 홀 속도와 이동거리를 감소시키는 단점이 있다. 이에 본 실험은, 종래의 MIC 결정화 방법에서 이용되어진 금속 증착막을 이용하는 대신, HIPIMS (High power impulse magnetron sputtering)와 PIII&D (Plasma immersion ion implantation and deposition) 공정을 복합시킨 방법으로 적은 양의 알루미늄을 이온주입함으로써 재결정화 온도를 낮추었을 뿐 아니라, 잔류하는 금속의 양도 매우 적은 다결정 반도체 박막을 만들 수 있었다. 분석 장비로는 박막의 결정화도를 측정하기 위해 GIXRD (Glazing incident x-ray diffraction analysis)와 Raman 분광분석법을 사용하였고, 잔류하는 금속의 양과 화학적 결합 상태를 알아보기 위해 XPS (X-ray photoelectron spectroscopy)를 통한 분석을 하였다. 또한, 표면 상태와 막의 성장 상태를 확인하기 위하여 HRTEM(High resolution transmission electron microscopy)를 통하여 관찰하였다.

  • PDF

An Experimental Study on Relationship Between Temperature Change and Generation Performance of a-Si BIPV Window System (박막 BIPV창의 온도변화와 발전성능 상관관계에 관한 실측연구)

  • Kim, Bit-Na;Yoon, Jong-Ho;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.179-184
    • /
    • 2012
  • This research on building Integrated Photovoltaic System replacing windows and doors with amorphous silicon thin film PV windows and doors installing same exact mount on Mock-up. The windows and doors should be installed in different angle and bearing so that we can analyse the amount of electricity from them. The objective of the research is to evaluate and investigate the relationship between factors(intensity of solar radiation, PV window surface temperature, incidence angle, and sky conditions) that affects performance of PV window and performance. The range and method of this research is to establish monitoring system and analysis the data from the monitoring system to evaluate the performance of PV windows that have thin film of solar battery. We should evaluate the insolation according to the position of PV window, output, and surface temperature according to months and seasons so that we can figure out the relationship between these. And we should investigate the relationship between performance and efficiency according to incidence angle and sky condition so that we can figure out the correlation between factors and performance.

The efficiency charateristics of intrinsic layer thickness dependence for amorphous silicon single junction solar cells (Intrinsic layer 두께 가변에 따른 단일접합 비정질 박막 태양전지의 효율 특성 변화)

  • Yoon, Ki-Chan;Kim, Young-Kook;Heo, Jong-Kyu;Choi, Hyung-Wook;Yi, Young-Suk;Yi, Jun-Sin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.80-82
    • /
    • 2009
  • The dependence of the efficiency characteristics of hydrogenated amorphous silicon single junction solar cells on the various intrinsic layer thickness has been investigate in the glass/$SnO_2$:F/p,i,n a-Si:H/Al type of amorphous silicon solar cells by cluster PECVD system. The open circuit voltage, short circuit current, fill factor and conversion efficiency have been measured under AM 1.5 condition. The result of the cell performance was improved about 8.2% due to an increase in the short circuit current.

  • PDF

Current-Voltage Measurement Behavior of the CIGS Solar Module through the Evaluation of KS C 8562 Standard (KS C 8562 평가를 통한 CIGS 태양광모듈의 출력 거동 분석)

  • Kyung Soo Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.2
    • /
    • pp.41-47
    • /
    • 2024
  • CIGS solar cells are thin film solar cells that have excellent light absorption coefficient and can be manufactured with high efficiency through the use of low materials. In Korea, they must pass KS certification for home and commercial installation. KS C 8562 is a standard for evaluating the durability of CIGS and thin film amorphous silicon solar modules and deals with contents such as light, temperature, humidity, and mechanical durability. Unlike general crystalline silicon solar modules, the CIGS solar module has a different behavior of output change through these environmental tests, so if it shows 90% or more of the rated output suggested by the manufacturer after the final test, it is judged to be a suitable product. In this paper, the output before and after individual tests was measured through the test method of KS C 8562 to observe the output change and to discover the vulnerabilities of the CIGS solar module when exposed to various environments. Through this, it was confirmed that humidity exposure was the most vulnerable and that it had output recovery characteristics for light (visible light and ultraviolet rays). This study attempted to present the output behavior characteristics and data of the CIGS module at the time when the high efficiency thin film photovoltaic module market is expected to be created in the future.

Power Output in Various Types of Solar Panels in the Central Region of Korea (한국 중부 지역의 태양광 모듈 타입에 따른 발전량 특성)

  • Chang, Hyo Sik
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.37-44
    • /
    • 2018
  • Solar panels are modules made up of many cells, like the N-type monosilicon, P-type monosilicon, P-type multisilicon, amorphous thin-film silicon, and CIGS solar cells. An efficient photovoltaic (PV) power is important to use to determine what kind of cell types are used because residential solar systems receive attention. In this study, we used 3-type solar panels - such as N-type monosilicon, P-type monosilicon, and CIGS solar cells - to investigate what kind of solar panel on a house or building performs the best. PV systems were composed of 3-type solar panels on the roof with each ~1.8 kW nominal power. N-type monosilicon solar panel resulted in the best power generation when monitored. Capacity Utilization Factor (CUF) and Performance Ratio (PR) of the N-type Si solar panel were 14.6% and 75% respectively. In comparison, N-type monosilicon and CIGS solar panels showed higher performance in power generation than P-type monosilicon solar power with increasing solar irradiance.

High aspect ratio Zinc Oxide nanorods for amorphous silicon thin film solar cells

  • Kim, Yongjun;Kang, Junyoung;Jeon, Minhan;Kang, Jiyoon;Hussain, Shahzada Qamar;Khan, Shahbaz;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.235.2-235.2
    • /
    • 2015
  • The front transparent conductive oxide (TCO) films must exhibit good transparency, low resistivity and excellent light scattering properties for high efficiency amorphous silicon (a-Si) thin film solar cells. The light trapping phenomenon is limited due to non-uniform and low aspect ratio of the textured glass [1]. We present the low cost electrochemically deposited uniform zinc oxide (ZnO) nanorods with various aspect ratios for a-Si thin film solar cells. Since the major drawback of the electrochemically deposited ZnO nanorods was the high sheet resistance and low transmittance that was overcome by depositing the RF magnetron sputtered AZO films as a seed layer with various thicknesses [2]. The length and diameters of the ZnO nanorods was controlled by varying the deposition conditions. The length of ZnO nanorods were varied from 400 nm to $2{\mu}m$ while diameter was kept higher than 200 nm to obtain different aspect ratios. The uniform ZnO nanorods showed higher haze ratio as compared to the commercially available FTO films. We also observed that the scattering in the longer wavelength region was favored for the high aspect ratio of ZnO nanorods and much higher aspect ratios degraded the light scattering phenomenon. Therefore, we proposed our low cost and uniform ZnO nanorods for the high efficiency of thin film solar cells.

  • PDF

Hydrothermally deposited Hydrogen doped Zinc Oxide nano-flowers structures for amorphous silicon thin film solar cells

  • Kim, Yongjun;Kang, Junyoung;Jeon, Minhan;Kang, Jiyoon;Hussain, Shahzada Qamar;Khan, Shahbaz;Kim, Sunbo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.236.1-236.1
    • /
    • 2015
  • The surface morphology of front transparent conductive oxide (TCO) films is very important to achieve high current density in amorphous silicon (a-Si) thin film solar cells since it can scatter the light in a better way. In this study, we present the low cost hydrothermal deposited uniform zinc oxide (ZnO) nano-flower structure with various aspect ratios for a-Si thin film solar cells. The ZnO nano-flower structures with various aspect ratios were grown on the RF magnetron sputtered AZO films. The diameters and length of the ZnO nano-flowers was controlled by varying the annealing time. The length of ZnO nano-flowers were varied from 400 nm to $2{\mu}m$ while diameter was kept higher than 200 nm to obtain different aspect ratios. The ZnO nano-flowers with higher surface area as compared to conventional ZnO nano structure are preferred for the better light scattering. The conductivity and crystallinity of ZnO nano-flowers can be enhanced by annealing in hydrogen atmosphere at 350 oC. The vertical aligned ZnO nano-flowers showed higher haze ratio as compared to the commercially available FTO films. We also observed that the scattering in the longer wavelength region was favored for the high aspect ratio of ZnO nano-flowers. Therefore, we proposed low cost and vertically aligned ZnO nano-flowers for the high performance of thin film solar cells.

  • PDF

비정질 실리콘 태양전지 후면 반사막 적용을 위한 저온 증착된 AZO 박막 특성에 관한 연구

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.315-315
    • /
    • 2016
  • The hydrogenated amorphous silicon (a-Si:H) thin film solar cells using n/Al or n/Ag/Al back reflector have low short circuit current (Jsc) due to high absorption coefficients of Al or work function difference between n-layer and the metal. In this article, we utilized aluminum doped zinc oxide (AZO) to raise the internal reflectance for the improvement of short current density (Jsc) in a-Si:H thin film solar cells. It was found that there was a slight increase in the reflectance in the long wavelength range at the process temperature of 125oC due to improved crystalline quality of the AZO back reflector. The optical band gap (Eg) and work function were affected by the temperature and so did the internal reflectance. The increased internal reflectance within the solar cell resulted in Jsc of 14.94 mA/cm2 and the efficiency of 8.84%. Jsc for the cell without back reflector was 12.29 mA/cm2.

  • PDF

Fabrication and Properties of pn Diodes with Antimony-doped n-type Si Thin Film Structures on p-type Si (100) Substrates (p형 Si(100) 기판 상에 안티몬 도핑된 n형 Si박막 구조를 갖는 pn 다이오드 제작 및 특성)

  • Kim, Kwang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.39-43
    • /
    • 2017
  • It was confirmed that the silicon thin films fabricated on the p-Si (100) substrates by using DIPAS (DiIsoPropylAminoSilane) and TDMA-Sb (Tris-DiMethylAminoAntimony) sources by RPCVD method were amorphous and n-type silicon. The fabricated amorphous n-type silicon films had electron carrier concentrations and electron mobilities ranged from $6.83{\times}10^{18}cm^{-3}$ to $1.27{\times}10^{19}cm^{-3}$ and from 62 to $89cm^2/V{\cdot}s$, respectively. The ideality factor of the pn junction diode fabricated on the p-Si (100) substrate was about 1.19 and the efficiency of the fabricated pn solar cell was 10.87%.

  • PDF