• Title/Summary/Keyword: Ammonium-exchange

Search Result 371, Processing Time 0.026 seconds

Purification and Characterization of Lipoxygenase from Melania Snail (다슬기에서 추출한 Lipoxygenase의 정제와 특성)

  • 이양봉;신의철;김병철;양지영;장영진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.808-812
    • /
    • 1998
  • Melania snail(Semisulcopira bensoni) is used as ingredient in Korean traditional soup and nutritional foods. Generally, lipoxygenase in several food products may produce off-flavors during their processing and storage. Therefore, the inactivation of lipoxygenase is required to make the better extracts from Melania sanil. Also, the quality on freshness of Melania snail may be evaluated by lipoxygenase activity. The lipoxygenae activity was the highest at 40~60% saturation among several concentrations in salting-ouot saturated solution of ammonium sulfate. The partial purification of lipoxygenase was successfully obtained by Sephacryl S-200 gel chromatography. The first peak among three peaks for protein determination showed the highest activity of lipoxygenase in 13~16 fractions among 100 fractions. The highest peak of lipoxygenase activity by ion exchange chromatography was shown at 0.1M NaCl. In the purification step, the specific activity was 20.8U/mg and activity yield was 19.8%. The optimum pH and temperature were pH6.0~8.0 and 3$0^{\circ}C$, respectively. Molecular weight of the lipoxygenase was estimated about 35kDa by SDS-PAGE.

  • PDF

Synthesis and Electrochemical Studies of Ni(Ⅱ) Complexes with Tetradentate Schiff Base Ligands

  • 정병구;임채평;국성근;조기형;최용국
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.173-179
    • /
    • 1996
  • A series of tetradentate Schiff base ligands; [1,2-bis(naphthylideneimino)ethane, 1,3-bis(naphthylideneimino)propane, 1,4-bis(naphthylideneimino)butane, and 1,5-bis(naphthylideneimino)pentane] and their Ni(Ⅱ) complexes have been synthesized. The properties of these ligands and their Ni(Ⅱ) complexes have been characterized by elemental analysis, IR, NMR, UV-vis spectra, molar conductance, and thermogravimetric analysis. The mole ratio of Schiff base to Ni(Ⅱ) metal was found to be 1:1. The electrochemical redox process of the ligands and their Ni(Ⅱ) complexes in DMF and DMSO solution containing 0.1 M tetraethyl ammonium perchlorate (TEAP) as a supporting electrolyte have been investigated by cyclic voltammetry, chronoamperometry, differential pulse voltammetry, and controlled potential coulometry at glassy carbon electrode. The redox process of the ligands was highly irreversible, whereas redox process of Ni(Ⅱ) complexes were observed as one electron transfer process in quasi-reversible and diffusion-controlled reaction. The electrochemical redox potentials of the Ni(Ⅱ) complexes were affected by the chelate ring size of ligands. The diffusion coefficients of Ni(Ⅱ) complexes containing 0.1 M TEAP in DMSO solution were determined to be 5.7-6.9 × 10-6 cm2/sec. Also the exchange rate constants were determined to be 1.8-9.5 × 10-2 cm2/sec. These values were affected by the chelate ring size of ligands.

Purification and Characterization of the Red Carotenoprotein from the Skin of Ascidian, Halocynthia roretzi 1. Purification and Characterization of the Caritenopritein (멍게껍질로부터 분리제정한 적색 Carotenoprotein의 특성 1. Carotenoprotein 의 정제 및 특성)

  • Kang, Ok-Ju;Suh, Myung-Ja;Lee, An-Jong;Kim, Se-Kwon
    • Journal of Life Science
    • /
    • v.5 no.4
    • /
    • pp.170-180
    • /
    • 1995
  • A carotennnoprotein from the skin of Ascidian(Halocynthia roretzi) was extracted by Triton X-100 and purified by ammonium sulfate fraction, SephadexG-200 charomatography and DEAE-cellulose ion exchange chromatography. The carotenoprotein was redwith broad $\lambda$$_{max}$ between 495, 467 and 318nm. The red carotenoprotein had an approximate molecular weight of 326KDa(gel filtration). SDS-PAGE indicated the presence of two polypeptodes of 84.1KDa and 74.4KDa, with different mobility in polyacrylamide gel electrophoresis. In the presence of denaturing agents such as organic solvent aand extreme pH, the red complex readily disociates to liberate the yellow carotenoid($\lambda$$_{max}$ 452nm) and a colourless apoprotein. The amino acid composition of carotenoprotein were mainly threonine(15.2%), aspartic acid(12.2%), glutamic acid(11.9%) and serine(9.6%), while proline was not found. The carotenoprotein consisted of lipids as structure units. Its major fatty acids composion were C$_{18:1}$, C$_{16:1}$, and C$_{16:0}$. The monounsaturated fatty acids(41.5%) contained abundant content compared to other fatty aacids(polyunsaturated fatty acids 37.4%, saturated fatty acids 20.6%).

  • PDF

Separation of Vanadium and Tungsten from Spent SCR DeNOX Catalyst by Ion-exchange Column (SCR 탈질 폐촉매로부터 이온교환칼럼을 이용한 바나듐과 텅스텐의 분리)

  • Heo, Seo-Jin;Jeon, Jong-Hyuk;Kim, Rina;Kim, Chul-Joo;Chung, Kyeong Woo;Jeon, Ho-Seok;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.30 no.4
    • /
    • pp.54-63
    • /
    • 2021
  • Vanadium and tungsten can be obtained by separating/recovering the leaching solution from a spent SCR DeNOX catalyst using the soda roasting-water leaching process. Therefore, in this study, the adsorption/desorption mechanism of vanadium and tungsten in an ion-exchange column was investigated using Lewatit MonoPlus MP 600, a strong basic anion exchange resin. The operating conditions for the separation of vanadium and tungsten in the ion-exchange column was intended to present. By conducting a continuous adsorption experiment in a pH 8.5 solution, the adsorption capacity of vanadium and tungsten was found to be 44.75 and 64.92 mg/(g of resin), respectively, which showed that the adsorption capacity of tungsten was larger than that of vanadium because of the difference in ion charge. Vanadium has a higher affinity for MP 600 than tungsten. Consequently, as the vanadium-containing solution is eluted through the ion exchange resin onto which tungsten is adsorbed, the adsorbed tungsten is exchanged with vanadium and desorbed. A continuous experiment was performed with a solution of vanadium and tungsten prepared at the same concentration as the spent SCR DeNOX catalyst leachate. The adsorption capacity of vanadium was found to be 48.72 mg/(g of resin) and 80% of the supplied vanadium was adsorbed; in contrast, almost no tungsten was adsorbed. Therefore, vanadium and tungsten were separated effectively. The ion exchange resin was treated with 2 M HCl at 15 mL/h, and 97.7% of the vanadium(99% purity) could be desorbed. After desorption, NH4Cl was added to precipitate ammonium polyvanadate at 90℃ and recover 93% of the vanadium.

Purification of antigenic proteins of Paragonimus westermani and their applicability to experimental cat paragonimiasis (폐(肺)디스토마(Paragonimus westermani) 감염(感染) 고양이 혈청(血淸)에 대(對)한 ELISA 항체가(抗體價)의 의의(意義))

  • Choi, Won-Young;Yoo, Jae-Eul;Nam, Ho-Woo;Choi, Hyung-Rak
    • Parasites, Hosts and Diseases
    • /
    • v.24 no.2
    • /
    • pp.177-186
    • /
    • 1986
  • This study was designed to evaluate the partially purified antigens which were fractionated from crude extract of Paragonimus westermani and to monitor the enzyme-linked immunosorbent assay (ELISA) in experimental cat paragonimiasis during the course of infection as well as before and after chemotherapy. Crude extract of 6-month-old adult P. westermani was fractionated to 5 antigens by successive applications of ammonium sulfate precipitation, ion exchange chromatography and gel filtration. And the cats, 10 in each group, were infected with 60, 30, 15, and 5 metacercariae, then the half of each group was treated with praziquantel 2 times in one day of 100mg per kilogram of weight on 150 days after the infection. Sera were collected every 10 days. ELISA was performed with the concentration of $2{\mu}g/ml$ antigen, 100 times diluted sera and 1,000 times diluted alkaline phosphatase conjugated anti-cat IgG. The results were as follows: 1. Absorbance by ELISA with proteins precipitated by differential concentration of ammonium sulfate was the highest at $51{\sim}65%$ precipitate (PA2), followed by $0{\sim}50%$ precipitate (PAl), $66{\sim}80%$ precipitate (PA3), and $81{\sim}90%$ precipitate (PA4). Unprecipitated protein over 90% ammonium sulfate (PA5) showed the lowest antigenicity. 2. Fractionation of PA1, PA2, and PA3 through the DEAE-cellulose column did not differentiate the antigenic proteins. 3. By passing through the Sephadex G-200 column, PA1 and PA2 were fractionated to high molecular weight proteins and those of low molecular weight which showed high absorbance by ELISA (PA1-I, II and PA2-I, II). But PA3 was shown to have a fraction of high molecular weight proteins (PA3-I) which showed high antigenicity. 4. SDS-polyacrylamide gel electrophoresis of PA1-I, P A1-II, PA2-I, PA2-II, PA3-I, and crude extract was performed. Fraction PA1-I was composed of proteins which had the molecular weight of 270 kilodaltons(KD) to 196 KD; of them 220KD protein was major band. Fraction PA2-I was composed of $255{\sim}225\;KD$, and PA3-I, $255{\sim}240\;KD$, respectively. Fraction PA1-II and fraction PA2-II consisted of 30 KD proteins. 5. Absorbance by ELISA began to increase within $10{\sim}20$ days after the infection and reached the highest on $140{\sim}180$ days, then made plateau thereafter. 6. Absorbance by ELISA decreased after praziquantel treatment. In 60 metacercariae infection group, the absorbance had been decreasing, but remained within the positive range during observation period, while those of 30, 15, and 5 metacercariae infection groups turned to negative range. 7. Fraction PA1-II showed the highest antigenicity in ELISA, then fraction PA2-I, fraction PA1-I, fraction PA2-II, fraction PA3-I and crude extract followed. In early phase of infection, the absorbance of fraction PA1-II showed more rapid increase than those of the other fractions and it came to positive range at $20{\sim}30$ days after infection.

  • PDF

Characterization of Neutral Invertase from Fast Growing Pea (Pisum sativum L.) Seedlings after Gibberellic Acid (GA) Treatment (GA 처리 후 급 성장하는 완두콩(Pisum sativum L.) 발아체로부터 분리된 중성 invertase의 특성)

  • Kim, Donggiun
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1021-1026
    • /
    • 2015
  • Invertase (β-D-fructosfuranosidase, EC 3.2.1.26) catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Three biochemical subgroups of invertases have been investigated in plants: vacuolar (soluble acid), cytoplasmic (soluble alkaline), and cell wall-bound (insoluble acid) invertases. An isoform of neutral invertase was purified from pea seedlings (Pisum sativum L.) and treated with gibberellic acid (GA) by sequential procedures consisting of ammonium sulfate precipitation, ion-exchange chromatography, absorption chromatography, and reactive green-19 affinity chromatography. The results of the overall insoluble invertase purification were a 430-fold increase. The purified neutral invertase was not glycosylated and had an optimum pH between neutral and alkaline (pH 6.8-7.5). It was inhibited by Tris, as well as by heavy metals, such as Hg2+ and Cu2+. Typical Michaelis–Menten kinetics were observed when the activity of the purified invertase was measured, with sucrose concentrations up to 100 mM. The Km and Vmax values were 12.95 mM and 2.98 U/min, respectively. The molecular mass was around 20 kDa. The sucrose-cleaving enzyme activity of this enzyme is similar to that of sucrose synthase and fructosyltransferase, but its biochemical characteristics are different from those of sucrose synthase and fructosyltransferase. Based on this biochemical characterization and existing knowledge, neutral INV is an invertase isoform in plants.

Production of L-α-Glycerophosphate Oxidase by streptococcus faecium M74 · LC (Streptococcus faecium M74 · LC에 의한 L-α-Glycerophosphate Oxidase의 생산)

  • Lee, In-Ae;Lee, Eun-Sook;Lee, June-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.5
    • /
    • pp.684-688
    • /
    • 2003
  • The objective of this study was to search for the best strain as a source of L- $\alpha$-glycerophosphate oxidase (GPO) production and to establish the process technology for the purification of GPO on an industrial scale. The GPO was produced by culturing Streptococcus faecium, and purified by ammonium sulfate, DEAE-cellulose and hydroxyapatite chromatography. The relative activity was 60 units/L for 5. faecim ATCC 12755, 65 units/L for 5. faecium ATCC 19634, and 67 units/L for 5. faecium $M_{74}$.LC, respectively. The optimum condition for fermentation was $37^{\circ}C$ for temperature, 300 rpm for stir rate, 0.5 L/min for aeration rate and 17 hours. The main culture medium prepared by the modified AC medium. AC medium consists of 0.1% glucose, 0.2% glycerol, 1.0% tryptone and 1.0% yeast extract, 0.5% $K_2HP0_4$, pH 7.0. The GPO was purified by ammonium sulfate fractionation and ion exchange column chromatography, The yield and purity were 17.2% and 5.3 fold, respectively.

Purification and Characterization of a Fibrinolytic Enzyme Produced from Bacillus amyloliquefaciens K42 Isolated from Korean Soy Sauce. (한국재래간장에서 분리한 Bacillus amyloliquefaciens K42가 생산하는 혈전용해효소의 정제 및 특성)

  • 윤경현;이은탁;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.284-291
    • /
    • 2003
  • Bacillus amyloliquefaciens K-42, which produces strongly a fibrinolytic enzyme, Was isolated from Ganjang, a traditional Korean soy sauce. The fibrinolytic enzyme was purified to homogeneity by ammonium sulfate fractionation, ion-exchange chromatography on DEAE-Sephadex A-50, gel chromatography on Sephadex G-100, and gel chromatography on Sephadex G-75 of the culture filtrate of Bacillus amyloliquefaciens K42. The purified enzyme showed the specific activity of 59.4 units per milligram, which was increased by 17.1 fold over the culture broth. And the molecular weight of purified fibrinolytic enzyme was confirmed to be about 45,000 Dalton by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme activity was relatively stable at pH 4.0-10.0 and the optimum pH was 8.0. The activity of the purified enzyme was increased by $Mg^{2+}$ , Cu$^{2+}$ but the enzyme was totally inhibited by $Ba^{2+}$ $Hg^{2+}$ In addition, the enzyme activity was potently inhibited by EDTA, EGTA and CDTA. It was concluded that the purified enzyme was a metalloprotease. And Km value was 2.03 mg/ml to fibrin.

Insect Resistance of Tobacco Plant Expressing CpBV-ELP1 Derived from a Polydnavirus (폴리드나바이러스 유래 CpBV-ELP1 발현 담배의 내충성)

  • Kim, Eunseong;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.56 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Polydnaviruses (PDVs) are a group of double-stranded DNA viruses symbiotic to some endoparasitoid wasps. Cotesia plutellae bracovirus (CpBV) is a PDV symbiotic to an endoparasitoid wasp, C. plutellae, parasitizing young larvae of Plutella xylostella. An early expressed gene, CpBV-ELP1, plays an important role in the parasitism by suppressing host cellular immunity by its cytotoxic activity against hemocytes. This study aimed to test its oral toxicity against insect pest by expressing it in a recombinant tobacco plant. A recombinant CpBV-ELP1 protein was produced using a baculovirus expression system and secreted to cell culture medium. The cell cultured media were used to purify CpBV-ELP1 by a sequential array of purification steps: ammonium sulfate fractionation, size exclusion chromatography, and ion exchange chromatography. Purified rCpBV-ELP1 exhibited a significant cytotoxicity against Spodoptera exigua hemocytes. CpBV-ELP1 was highly toxic to the fifth instar larvae of S. exigua by injection to hemocoel. It also showed a significant oral toxicity to fifth instar larvae of S. exigua by a leaf-dipping assay. CpBV-ELP1 was cloned into pBI121 vector under CaMV 35S promoter with opaline synthase terminator. Resulting recombinant vector (pBI121-ELP1) was used to transform Agrobacterium tumefaciens LBA4404. The recombinant bacteria were then used to induce callus of a tobacco (Nicotiana tabacum Xanthi) leaves and subsequent generation (T1) plants were selected. T1 generation tobacco plants expressing CpBV-ELP1 gave significant insecticidal activities against S. exigua larvae. These results suggest that CpBV-ELP1 gene can be used to control insect pests by constructing transgenic crops.

Purification and Characterization of Superoxide Dismutase in Sphingomonas sp. KS 301 (Sphingomonas sp. KS 301의 Superoxide Dismutase 정제 및 특성)

  • Kang, Hee-Jeong;Jeong, Jae-Hoon;Choi, Ji-Hye;Son, Seung-Yeol
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.83-90
    • /
    • 2007
  • Sphingomonas sp. KS 301, which was isolated from oil contaminated soil, was shown to have five different SODs (SODI, II, III, IV, V) which can be separated by DEAE-Sepharose chromatography, and SOD III was finally purified in this study by ammonium sulfate precipitation, DEAE-Sepharose chromatography, Superose 12 gel filtration and Uno-Q1 ion exchange chromatography. The molecular weight of SOD III was 23 kDa as determined by SDS-PAGE and the apparent molecular weight of the native enzyme was estimated to be approximately 71 kDa by Superose-12 gel filtration chromatography. These data suggest that the purified SOD consists of at least two subunits. The specific activity of the SOD III was higher than Mn type or Fe type SOD of Escherichia coli by 5 fold. To determine the type of SOD III, inhibitory effects of $NaN_{3},\;H_{2}O_{2},\;KCN$ were examined. 10 mM $NaN_{3}$ was able to inhibit 56% of the SOD III activity, which indicates that this SOD is Mn type. The optimum pH of the SOD III was 7.0 and the optimum temperature was $20^{\circ}C$. N-terminal amino acid sequence of purified SOD III was most similar to those of Psudomonase ovalis and Vibrio cholerae among bacteria.