• Title/Summary/Keyword: Ammonium nitrogen

Search Result 729, Processing Time 0.023 seconds

Variations in Ammonium Removal Rate with Tidal State in the Macrotidal Han River Estuary: Potential Role of Nitrification (한강기수역에서의 암모늄 제거율 변화 및 질산화의 잠재적 역할)

  • Hyun, Jung-Ho;Chung, Kyung-Ho;Park, Yong-Chul;Choi, Joong-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • In order to understand the importance of tidal action and $NH_4{^+}$ -nitrification in the removal of dissolved oxygen (DO) and $NH_4{^+}$, concentrations of DO, $NH_4{^+}$, $NO_2{^-}$ and $NO_3{^-}$ were measured with time for water samples collected at different tidal state in the eutrophic macrotidal Han River estuary. Field measurements indicated that most environmental parameters, except for the water temperature and DO concentration, were tightly controlled by the eutrophic freshwater runoff and large-scale tidal action. Dark incubation of the water sample at $25^{\circ}C$ showed that the removal rates of DO and $NH_4{^+}$ in high tide sample were 2.76 ${\mu}M\;O_2\;d^{-1}$ and 1.76 ${\mu}M\;N\;d^{-1}$ respectively, and increased to 5.66 ${\mu}M\;O_2\;d^{-1}$ and 3.36 ${\mu}M\;N\;d^{-1}$ respectively, in low tide sample. These changes indicated that microbial degradation and uptake of organic matter and inorganic nutrients were more active during low tide. $NH_4{^+}$-nitrification responsible for total DO removal in low tide (23.81%) and $NH_4{^+}$ turnover rates due to $NH_4{^+}$-nitrification in low tide (0.18 $d^{-1}$) were approximately 3.7 times and 3 times, respectively, higher than those in high tide. These results indicated that $NH_4{^+}$ -nitrifying bacteria introduced into the Han River estuary during low tide played a significant role in the removal of DO and $NH_4{^+}$. The decreasing removal rates in DO and $NH_4{^+}$ with the increasing tidal level seemed to be associated with the salinity impact on the halophobic freshwater $NH_4{^+}$-nitrifying bacteria. The results implied that anthropogenic $NH_4{^+}$ sources should be treated prior to the freshwater runoff into the estuary for the effective control of $NH_4{^+}$ in the Han River estuary. These results also suggest that parallel ecological studies on the chemoautotrophic nitrifying bacteria are essential for the elucidation of nitrogen cycles in the eutrophic Han River estuary.

  • PDF

Studies on the Induction of Available Mutant of Acetic Acid Bacteria by UV-light Irradiation and NTG Treatment. - The Selection of Mutant Strains and Various Conditions for Acetic Acid Production - (Acetobacter sp.와 그 변이주(變異株)를 이용(利用)한 식초산(食酢酸) 발효(醱酵)에 관한 연구(硏究) - 변이주(變異株)의 선정(選定) 및 생산조건(生酸條件) -)

  • Kim, Chan Jo;Park, Yoon Joong;Lee, Seuk Keun;Oh, Man Jin
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.169-175
    • /
    • 1980
  • These studies were conducted to induce the available mutant strains in acetic acid bacteria by the irradiation of UV-light and the treatment of N-methyl-N'-nitro-N'-nitrosoguanidine. 109 strains which were capable of producing acid in the ethanol containing medium were isolated from vinegar and Kimchi collected from the region of Daejeon city. From the collection T-50 strain was identified to have a strong fermentation power and selected as a mother strain for the study. Two mutants were obtained by treating T-50 strain with UV and NTG, and these mutants had a rapid acid production in the initial stage. The study was then made to compare the basic condition for acetic acid production of the mother strain and two mutant strains. The summarized results were as follows; 1. The isolated strain (T-50) was identified as Acetobacter aceti by Bergey's manual and Acetic acid bacteria (Tokyo Univ. press). 2. The selected strain was died completely when the strain was irradiated with 15 W UV-light at a distance of 45 cm for 160 seconds. 3. The mutants such as U-48 and N-67 were rapid in the acetic acid production at the initial stage compare to the mother strain. 4. Acetic acid formation by the shaking culture method was maximized in 2 days culture, and the optimal temperature for acetic acid production was $30^{\circ}C$. 5. Acetic acid was effectively produced by the addition of 0.1% ammonium sulfate as a nitrogen source and was also produced rapidly by the addition of 0.1% glucose.

  • PDF

Long-term Variation and Characteristics of Water Quality in the Yeoja Bay of South Sea, Korea (여자만 수질환경의 특성과 장기변동)

  • Park, Soung-Yun;Kim, Sang-Soo;Kim, Pyoung-Joong;Cho, Eun-Seob;Kim, Byong-Man;Jeon, Sang-Baek;Jang, Su-Jeng
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.203-218
    • /
    • 2011
  • Long-term trends and distribution patterns of water quality were investigated in the Yeoja Bay of South Sea, Korea from 1976 to 2010. Water samples were collected at 3 stations and physicochemical parameters were analyzed including water temperature, salinity, hydrogen ion concentration (pH), dissolved oxygen (DO), chemical oxygen demand (COD), suspended solids (SS) and nutrients. Spatial distribution patterns of temperature, pH and DO were not clear among stations but the seasonal variations were distinct except ammonium. The trend analysis by principal component analysis (PCA) during 31 years revealed the significant variations in water quality in the study area. Spatial water qualities were discriminated into 2 clusters by PCA; station cluster 1 and 2~3. Annual water qualities were clearly discriminated into 4 clusters by PCA. By this multi-variate analysis, the annual trends were summarized as the followings; water temperature, COD and SS tended to increase from late 1970's, decreased salinity, and increased phosphate from 1991 to 2001 and increased dissolved inorganic nitrogen. Water quality was showed by the input of fresh water same as those of Kyoungin coastal area, Asan coastal area, Choensoo bay, Gunsan coastal and Mokpo coastal area in the Yeoja Bay.

Optimization of Supercritical Water Oxidation(SCWO) Process for Decomposing Nitromethane (Nitromethane 분해를 위한 초임계수 산화(SCWO) 공정 최적화)

  • Han, Joo Hee;Jeong, Chang Mo;Do, Seung Hoe;Han, Kee Do;Sin, Yeong Ho
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.659-668
    • /
    • 2006
  • The optimization of supercritical water oxidation (SCWO) process for decomposing nitromethane was studied by means of a design of experiments. The optimum operating region for the SCWO process to minimize COD and T-N of treated water was obtained in a lab scale unit. The authors had compared the results from a SCWO pilot plant with those from a lab scale system to explore the problems of scale-up of SCWO process. The COD and T-N in treated waters were selected as key process output variables (KPOV) for optimization, and the reaction temperature (Temp) and the mole ratio of nitromethane to ammonium hydroxide (NAR) were selected as key process input variables (KPIV) through the preliminary tests. The central composite design as a statistical design of experiments was applied to the optimization, and the experimental results were analyzed by means of the response surface method. From the main effects analysis, it was declared that COD of treated water steeply decreased with increasing Temp but slightly decreased with an increase in NAR, and T-N decreased with increasing both Temp and NAR. At lower Temp as $420{\sim}430^{\circ}C$, the T-N steeply decreased with an increase in NAR, however its variation was negligible at higher Temp above $450^{\circ}C$. The regression equations for COD and T-N were obtained as quadratic models with coded Temp and NAR, and they were confirmed with coefficient of determination ($r^2$) and normality of standardized residuals. The optimum operating region was defined as Temp $450-460^{\circ}C$ and NAR 1.03-1.08 by the intersection area of COD < 2 mg/L and T-N < 40 mg/L with regression equations and considering corrosion prevention. To confirm the optimization results and investigate the scale-up problems of SCWO process, the nitromethane was decomposed in a pilot plant. The experimental results from a SCWO pilot plant were compared with regression equations of COD and T-N, respectively. The results of COD and T-N from a pilot plant could be predicted well with regression equations which were derived in a lab scale SCWO system, although the errors of pilot plant data were larger than lab ones. The predictabilities were confirmed by the parity plots and the normality analyses of standardized residuals.

Effect of Monoculture and Mixtures of Green Manure Crimson Clover (Trifolium incarnatum) on Rice Growth and Yield in Paddy (답리작에서 녹비작물 크림손클로버 단파 및 혼파가 벼 생육 및 수량에 미치는 영향)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Kim, Min-Tae;Oh, In-Seok;Choi, Bong-Su;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.847-852
    • /
    • 2011
  • Green manure crops are mainly used to reduce the application of chemical fertilizers. Mixture of green manure crops have beneficial effects in agroecosystem. In this study, experiments were conducted to evaluate the effects of monoculture and mixtures of crimson clover (Trifolium incarnatum) on rice growth and yield in paddy. This experiment was conducted at Sinheung series (fine loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquepts) from Oct. 2007 to Oct. 2009 at the National Institute of Crop Science (NICS), RDA, Suwon, Gyeonggi province, Korea. Seeding rates of crimson clover (CC) were consisted of monoculture (CC2, 3, 4 kg and hairy vetch 5 kg $10a^{-1}$) and mixtures (CC 2 + barley 7, CC 3 + barley 7, CC 4 + barley 7, and CC2 + hairy vetch $5kg\;10a^{-1}$). Seeds were drilled by partial tillage machine on 9th Oct. in 2007. Monoculture and mixture of crimson clover as a green manure crop was incorporated in soil for rice cultivation on 15th May in 2008. Chemical fertilizers had not been applied to monoculture and mixture plots. The biomass and N production of monoculture plots were lower than mixture plots. The biomass and N production of CC 2 + hairy vetch $5kg\;10a^{-1}$ plot were the highest among mixtures treatments. In rice growing season, ammonium nitrogen concentrations in soil were a little high trends at CC 2 + hairy vetch $5kg\;10a^{-1}$ plot. And soil bulk density and porosity were improved at mixture plot after rice harvesting. The rice yield of CC 2 + hairy vetch $5kg\;10a^{-1}$ plot was not significantly different from conventional practice plot. These results indicated that cropping of crimson clover with hairy vetch mixture was better than barley mixture for environmental friendly rice cultivation.

Optimization of cultivation conditions for pullulan production from Aureobasidium pullulans MR by response surface methodology (반응표면분석법을 이용한 Aureobasidium pullulans MR의 풀루란 생산을 위한 배양 조건 최적화)

  • Jo, Hye-Mi;Kim, Ye-Jin;Yoo, Sang-Ho;Kim, Chang-Mu;Kim, KyeWon;Park, Cheon-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.195-203
    • /
    • 2021
  • Aureobasidium pullulans, a black yeast, produces pullulan, a linear α-glucan composed of maltotriose repeating units linked by α(1→6)-glycosidic linkages. Pullulan can be widely used in food, cosmetic, and biotechnology industries. In this study, we isolated eight strains of A. pullulans from Forsythia koreana, Magnolia kobus DC., Spiraea prunifolia var. simpliciflora, Cornus officinalis, Cerasus, and Hippophae rhamnoides. Among them, A. pullulans MR was selected as the best pullulan producer. The effects of a carbon source, a nitrogen source, and pH on pullulan production were examined. The optimal cultivation conditions for pullulan production by A. pullulans MR were determined by response surface methodology as 15% sucrose, 0.4% soy peptone, and an initial pH of 7 at 26℃. Under these conditions, the predicted pullulan production was 47.6 g/L, which was very close to the experimental data (48.9 g/L).

Study on Causes and Countermeasures for the Mass Death of Fish in Reservoirs in Andong-si (안동시 저수지에서의 대량 어류 폐사에 대한 원인과 대책에 관한 연구)

  • Su Ho Bae;Sun Jin Hwang;Youn Jung Kim;Cheol Ho Jeong;Seong Yun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.52-62
    • /
    • 2023
  • This study focused on determining the specific causes and prevention methods of mass fish deaths occurred in five reservoirs (Gagugi, Neupgokgi, Danggokgi, Sagokji, and Hangokji) in Andong-si. For this purpose, a survey of agricultural land and livestock in the upper part of the reservoirs and analysis of water quality in the reservoir irrespective of whether it rains or not were conducted. We attempted to examine the changes in dissolved oxygen (DO) in the surface and bottom layers of reservoirs and changes in DO depending on the amount of livestock compost and time. Based on the above investigations, treatment plans were established to efficiently control the inflow of contaminated water into reservoirs. The rainfall and farmland areas in the upper part of the reservoir were investigated using Google and aviation data provided by the Ministry of Land, Infrastructure, and Transport. The current status of livestock farms distributed around the reservoirs was also examined because compost from these farms can flow into the reservoir when it rains. Various water quality parameters, such as phosphate phosphorus (PO4-P) and ammonium nitrogen (NH3-N), were analyzed and compared for each reservoir during the rainy season. Changes in the DO concentration and electrical conductivity (EC) were also observed at the inlet of the reservoir during raining using an automated instrument. In addition, DO was measured until the concentration reached 0 ppm in 10 min by adding livestock compost at various concentrations (0.05%, 0.1%, 0.3%, and 0.5% by wt.), where the concentration of the livestock compost represents the relative weight of rainwater. The DO concentration in the surface layer of reservoirs was 3.7 to 5.3 ppm, which is sufficient for fish survival. However, the fish could not survive at the bottom layer with DO concentration of 0.0-2.1 ppm. When the livestock compost was 0.3%, DO required 10-19 h to reach 0 ppm. Considering these results, it was confirmed that the DO in the bottom layer of the reservoir could easily change to an anaerobic state within 24 h when the livestock compost in the rainwater exceeds 0.3%. The results show that the direct cause of fish mortality is the inflow of excessive livestock compost into reservoirs during the first rainfall in spring. All the surveyed reservoirs had relatively good topographical features for the inflow of compost generated from livestock farms. This keeps the bottom layer of the reservoir free of oxygen. Therefore, to prevent fish death due to insufficient DO in the reservoir, measures should be undertaken to limit the amount of livestock compost flowing into the reservoir within 0.3%, which has been experimentally determined. As a basic countermeasure, minerals such as limestone, dolomite, and magnesia containing calcium and magnesium should be added to the compost of livestock farms around the reservoir. These minerals have excellent pollutant removal capabilities when sprayed onto the compost. In addition, measures should be taken to prevent fish death according to the characteristics of each reservoir.

Soil properties in Panax ginseng nursury by parent rock (모암별 인삼묘포지의 토양특성에 관한 연구)

  • Min, Ell-Sik;Park, Gwan-Soo;Song, Suck-Hwan;Lee, Sam-Woong
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.1
    • /
    • pp.31-40
    • /
    • 2003
  • A research has been done for growing characteristics of Korean ginseng in Geumsan of Chungnam Province. It had been made to determine the transitional element concentrations of the rocks, divided by biotitic granite(GR) and phyllite(PH). The physical and chemical properties of their weathering soils and ginseng nursery soils were analyzed. The texture in the GR weathering and ginseng nursery soils were sandy clay, and the texture of the PH weathering and ginseng nursery soils were heavy or silty clay. The bulk densities of the GR and PH weathering soils were $1.21{\sim}1.32g/cm^3$ and $1.26{\sim}1.38g/cm^3$, respectively. Also, the bulk densities of the GR and PH ginseng nursery soils were $1.02{\sim}1.10g/cm^3$, respectively. The pH (4.80) of the GR weathering soil were lower than the pH of the PH(5.34) weathering soil. The pH in the 2 year and 4 year-ginseng nursery soil of the GR were 4.39 and 4.40. In addition, those of the PH were 5.24 and 5.34, respectively. The difference in pH of the two nursery soils could be from the pH difference between the two parent materials. The organic matter contents of the GR weathering soils(0.24%) were higher than those of the PH(1.02%) weathering soils. The organic matter of the 2 and 4 year-ginseng GR nursery soils were 0.87% and 1.52%, and of the PH nursery soils were 2.06% and 2.96%, respectively. The total nitrogen contents of the GR weathering soils were 259.43ppm and of the PH weathering soils were 657.22ppm. Those of 2 and 4 year-ginseng GR nursery soils were 588.04ppm and 657.22ppm and those of the PH nursery soils were 1037.72ppm and 1227.96ppm, respectively. The nitrate and ammonium contents of the GR weathering soils were the extremely small, and those of the PH weathering soils were 6.7ppm and 9.94ppm. Those of 2 year-ginseng GR nursery soils(223.09ppm and 26.96ppm) were higher than those of PH(19.46ppm and 8.23ppm) nursery soils. And those of 2 year-ginseng PH nursery soils(14.22ppm and 16.84ppm) were lower than those of PH(306.93ppm, 34.21ppm) nursery soils. The difference was due to fertilizer types and more deposits of nitrate after oxidation of ammonium. The phosphate contents of the GR and PH weathering soils were 14.41ppm and 38.60ppm. Those of GR 2 and 4 year-ginseng nursery soils were 46.89ppm and 102.44ppm and those of the PH nursery soils were 147.04ppm and 38.60ppm. The cation exchange capacities of the GR weathering soils were 12.34me/100g and those of the PH weathering soils were 15.40me/100g. Those of 2 and 4 year-ginseng GR nursery soils were 15.80me/100g and 7.70me/100g and those of PH nursery soils were 12.14me/100g and 12.83me/100g. All of exchangeable cation($K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$) contents in the nursery soils were higher than those in the weathering soils. The $SO_4{^2-}$ contents of the weathering soils in both of the GR(5.98ppm) and PH(9.94ppm) were higher than those of the GR and PH ginseng nursery soils. The $Cl^-$) contents of the GR and PH weathering soils were a very small and those of the nursery soils(2-yr GR: 39.06ppm, 4-yr GR: 273.43ppm, 2-yr PH: 66.41ppm, 4-yr PH: 406.24ppm) were high because of fertilizer inputs.

  • PDF

Studies on Nutrio-physiological Response of Rice Plant to Root Environment (근부환경(根部環境)에 따른 수도(水稻)의 영양생리적(營養生理的) 반응(反應)에 관(關)한 연구(硏究))

  • Park, J.K.;Kim, Y.S.;Oh, W.K.;Park, H.;Yazawa, F.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.53-68
    • /
    • 1969
  • The nutriophysiological response of rice plant to root environment was investigated with eye observation of root development and rhizosphere in situation. The results may be summarized as follows: 1) The quick decomposition of organic matter, added in low yield soil, caused that the origainal organic matter content was reached very quickly, in spite of it low value. In high yield soil the reverse was seen. 2) In low yield soil root development, root activity and T/R value were very low, whereas addition of organic matter lowered them still wore. This might be contributed to gas bubbles around the root by the decomposition of organic matter. 3) Varietal difference in the response to root environment was clear. Suwon 82 was more susceptible to growth-inhibitine conditions on low-yield soil than Norin 25. 4) Potassium uptake was mostly hindered by organic matter, while some factors in soil hindered mostly posphorus uptake. When the organic matter was added to such soil, the effect of them resulted in multiple interaction. 5) The root activity showed a correlation coeffieient of 0.839, 0.834 and 0.948 at 1% level with the number of root, yield of aerial part and root yield, respectively. At 5% level the root-activity showed correlation-coefficient of 0.751, 0.670 and 0.769 with the uptake of the aerial part of respectively. N, P and K and a correlation-coefficient of 0.729, 0.742 and 0.815 with the uptake of the root of respectively N.P. and K. So especially for K-uptake a high correlation with the root-activity was found. 6) The nitrogen content of the roots in low-yield soil was higher than in high-yield soil, while the content in the upper part showed the reverse. It may suggest ammonium toxicity in the root. In low-yield soil Potassium and Phosphorus content was low in both the root and aerial part, and in the latter particularly in the culm and leaf sheath. 7) The content of reducing sugar, non-recuding sugar, starh and eugar, total carbohydrates in the aerial part of plants in low yield soil was higher than in high yield soil. The content of them, especially of reducing sugar in the roots was lower. It may be caused by abnormal metabolic consumption of sugar in the root. 8) Sulfur content was very high in the aerial part, especially in leaf blade of plants on low yield soil and $P_2O_5/S$ value of the leaf blade was one fifth of that in high yield soil. It suggests a possible toxic effect of sulfate ion on photophosphorization. 9) The high value of $Fe/P_2O_5$ of the aerial part of plants in low yield soil suggests the possible formation of solid $Fe/PO_4$ as a mechanical hindrance for the translocation of nutrients. 10) Translocation of nutrients in the plant was very poor and most nutrients were accumulated in the root in low yield soil. That might contributed to the lack of energy sources and mechanical hindrance. 11) The amount of roots in high yield soil, was greater than that in low yield soil. The in high-yield soil was deep, distribution of the roots whereas in the low-yield soil the root-distribution was mainly in the top-layer. Without application of Nitrogen fertilizer the roots were mainly distributed in the upper 7cm. of topsoil. With 120 kg N/ha. root were more concentrated in the layer between 7cm. and 14cm. depth. The amount of roots increased with the amount of fertilizer applied.

  • PDF