Browse > Article
http://dx.doi.org/10.9721/KJFST.2021.53.2.195

Optimization of cultivation conditions for pullulan production from Aureobasidium pullulans MR by response surface methodology  

Jo, Hye-Mi (Department of Food Science and Biotechnology, Kyung Hee University)
Kim, Ye-Jin (Department of Food Science and Biotechnology, Kyung Hee University)
Yoo, Sang-Ho (Department of Food Science & Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University)
Kim, Chang-Mu (National Institute of Biological Resources)
Kim, KyeWon (Academic Industry Cooperation, Hankyong National University)
Park, Cheon-Seok (Department of Food Science and Biotechnology, Kyung Hee University)
Publication Information
Korean Journal of Food Science and Technology / v.53, no.2, 2021 , pp. 195-203 More about this Journal
Abstract
Aureobasidium pullulans, a black yeast, produces pullulan, a linear α-glucan composed of maltotriose repeating units linked by α(1→6)-glycosidic linkages. Pullulan can be widely used in food, cosmetic, and biotechnology industries. In this study, we isolated eight strains of A. pullulans from Forsythia koreana, Magnolia kobus DC., Spiraea prunifolia var. simpliciflora, Cornus officinalis, Cerasus, and Hippophae rhamnoides. Among them, A. pullulans MR was selected as the best pullulan producer. The effects of a carbon source, a nitrogen source, and pH on pullulan production were examined. The optimal cultivation conditions for pullulan production by A. pullulans MR were determined by response surface methodology as 15% sucrose, 0.4% soy peptone, and an initial pH of 7 at 26℃. Under these conditions, the predicted pullulan production was 47.6 g/L, which was very close to the experimental data (48.9 g/L).
Keywords
Aureobasidium pullulans; pullulan; optimization; response surface methodology; yeast;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Reis RA, Tischer CA, Gorin PA, Iacomini M. A new pullulan and a branched (1→3)-,(1→6)-linked β-glucan from the lichenised ascomycete Teloschistes flavicans. FEMS Microbiol. Lett. 210: 1-5 (2002)   DOI
2 Ronen M, Guterman H, Shabtai Y. Monitoring and control of pullulan production using vision sensor. J. Biochem. Biophys. Methods. 51: 243-249 (2002)   DOI
3 Ryu SD, Heo MG, Yoon KS. Factors affecting physical properties of solid sunscreen using response surface methodology. J. Soc. Cos-met. Scientists Korea. 45: 237-254 (2019)
4 Seveiri RM, Hamidi M, Delattre C, Sedighian H, Pierre G, Rahmani B, Darzi S, Brasselet C, Karimitabar F, Razaghpoor A. Characterization and prospective applications of the exopolysaccharides produced by Rhodosporidium babjevae. Adv. Pharm. Bull. 10: 254-263 (2020)   DOI
5 Sheng L, Tong Q, Ma M. Why sucrose is the most suitable substrate for pullulan fermentation by Aureobasidium pullulans CGMCC1234? Enzyme Microb. Technol 92: 49-55 (2016)   DOI
6 Shin YC, Han JK, Kim YH, Lee HS, Buyn SM. Inhibition Effect of Sugar Concentrations on the Cell Growth and the Pullulan production of Aureobasidium pullulans. Misainmurhag Hoiji. 12: 360-366 (1987a)
7 Shin YC, Kim YH, Lee HS, Kim YN, Byun SM. Production of pullulan by a fed-batch fermentation. Biotechnol. Lett 9: 621-624 (1987b)   DOI
8 Singh R, Gaur R, Pandey PK, Jamal F, Pandey LK, Singh S, Kewat HK, Tiwari S, Biswas P, Gaur MK. A novel media optimized for production of pullulan in flask type fermentation system. Int. J. Curr. Microbiol. Appl. Sci. 7: 53-61 (2018a)
9 Shin YC, Kim YH, Lee HS, Cho SJ, Byun SM. Production of exopolysaccharide pullulan from inulin by a mixed culture of Aureobasidium pullulans and Kluyveromyces fragilis. Biotechnol. Bioeng. 33: 129-133 (1989)   DOI
10 Shin YC, Byun SM. Effect of pH on the elaboration of pullulan and the morphology of Aureobasidium pullulans. Hanguk Misaengmul Saengmyong Konghakhoe Chi. 19: 193-199 (1991)
11 Singh R, Kaur N. Biochemical and molecular characterization of a new pullulan producer Rhodosporidium paludigenum PUPY-06. J. appl. 6: 28-37 (2018b)
12 Singh RS, Saini GK, Kennedy JF. Pullulan: microbial sources, production and applications. Carbohydr. Polym. 73: 515-531 (2008)   DOI
13 Yang SN, Baek SW, Kim NK. Effect of aeration and agitation rates on pullulan production. Korean J. Chem. Eng. 38: 556-559 (2000)
14 Singh RS, Saini GK, Kennedy JF. Downstream processing and characterization of pullulan from a novel colour variant strain of Aureobasidium pullulans FB-1. Carbohydr. Polym. 78: 89-94 (2009a)   DOI
15 Singh RS, Singh H, Saini GK. Response Surface Optimization of the Critical Medium Components for Pullulan Production by Aureobasidium pullulans FB-1. Appl. Biochem. Biotechol. 152: 42-53 (2009b)   DOI
16 Son CW, Lee JW, Chung CH, Nam SW, Jo KI, Yang JK. Continuous Production of Pullulan by Aureobasidium pullulans HP-2001with Feeding of High Concentration of Sucrose. J. Microbiol. Biotechnol. 16: 374-380 (2006)
17 Waksman N, de Lederkremer RM, Cerezo AS. The structure of an α-D-glucan from Cyttaria harioti Fischer. Carbohydr. Res. 59: 505-515 (1977)   DOI
18 Wang D, Yu X, Gongyuan W. Pullulan production and physiological characteristics of Aureobasidium pullulans under acid stress. Appl. Microbiol. Biotechnol. 97: 8069-8077 (2013)   DOI
19 Yim MH, Son HS, Chung NH, Yang HC. Studies on the production of pullulan by Aureobasidium pullulans. J. Microbiol. Biotechnol. 12: 219-219 (1984)
20 Zajic J, LeDuy A. Pullulan in Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Inc. Boboken, NJ, USA. pp. 643-652 (1977).
21 Cheng K-C, Demirci A, Catchmark JM. Pullulan: biosynthesis, production, and applications. Appl. Microbiol. Biotechnol. 92: 29 (2011b)   DOI
22 Bauer R. Physiology of Dematium pullulans de Bary. Zentralbl Bacteriol Parasitenkd Infektionskr Hyg. Abt2 98:133-167 (1938)
23 Catley B. Utilization of carbon sources by Pullularia pullulans for the elaboration of extracellular polysaccharides. Appl. Microbiol. Biotechnol. 22: 641-649 (1971)
24 Cheng K-C, Demirci A, Catchmark JM. Evaluation of medium composition and fermentation parameters on pullulan production by Aureobasidium pullulans. Food Sci. Technol. Int. 17: 99-109 (2011a)   DOI
25 Chi Z, Wang F, Chi Z, Yue L, Liu G, Zhang T. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl. Microbiol. Biotechnol 82: 793-804 (2009)   DOI
26 Chi Z, Zhao S. Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast strain. Enzyme Microb. Technol. 33: 206-211 (2003)   DOI
27 Fraser C, Jennings H. A glucan from Tremella mesenterica NRRL-Y6158. Can. J. Chem. 49: 1804-1807 (1971)   DOI
28 Duan X, Chi Z, Wang L, Wang X. Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr. Polym. 73: 587-593 (2008)   DOI
29 Dufresne R, Thibault J, Leduy A, Lencki R. The effects of pressure on the growth of Aureobasidium pullulans and the synthesis of pullulan. Appl. Microbiol. Biotechnol. 32: 526-532 (1990)   DOI
30 Finkelman M, Vardanis A. Simplified microassay for pullulan synthesis. Appl. Environ. Microbiol. 43: 483-485 (1982)   DOI
31 Gibson LH, Coughlin RW. Optimization of high molecular weight pullulan production by Aureobasidium pullulans in batch fermentations. Biotechnol. Prog.18: 675-678 (2002)   DOI
32 Grumezescu AM, Butu A. Microbial Production of Food Ingredients and Additives. vol 5. Academic Press. Cambridge, MA, USA. pp. 355-356 (2017)
33 Jiang L. Optimization of fermentation conditions for pullulan production by Aureobasidium pullulans using response surface methodology. Carbohydr. Polym. 79: 414-417 (2010)   DOI
34 Kim JH, Kim MR, Lee JH, Lee JW, Kim SK. Production of high molecular weight pullulan by Aureobasidium pullulans using glucosamine. Biotechnol. Lett. 22: 987-990 (2000)   DOI
35 Na k, Lee KY, Park DH. Effects of pH and Nitrogen sources on the Pullulan Production by Aureobasidium pullulans. KSBB J. 11: 497-503 (1996)
36 Kim DG, Shim JY, Part JT, Lee WH. Design of optimal experimental conditions for scaling-up G7 enzyme using response surface method. Proceeding of the Korean Society for Agricultural Machinery Conference. 21: 133-134 (2016)
37 Kurtzman CP, Robnett CJ. Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses. FEMS Yeast Res. 3: 417-432 (2003)   DOI
38 Ma ZC, Fu WJ, Liu GL, Wang ZP, Chi ZM. High-level pullulan production by Aureobasidium pullulans var. melanogenium P16 isolated from mangrove system. Appl. Microbiol. Biotechnol. 98: 4865-4873 (2014)   DOI
39 McNeil B, Kristiansen B. Temperature effects on polysaccharide formation by Aureobasidium pullulans in stirred tanks. Enzyme Microb. Technol 12: 521-526 (1990)   DOI
40 Mounir R, Durieux A, Bodo E, Allard C, Simon J.-P, Achbani E.-H, Jaafari S. EI, Douira A, Jijakli M-H. Production, formulation and antagonistic activity of the biocontrol like-yeast Aureobasidium pullulans against Penicillium expansum. Biotechnol. Lett. 29: 553-559 (2007)   DOI
41 Oliva EM, Cirelli AF, de Lederkremer RM. Characterization of a pullulan in Cyttaria darwinii. Carbohydr. Res. 158: 262-267 (1986)   DOI
42 Prasongsuk S, Berhow MA, Dunlap CA, Weisleder D, Leathers TD, Eveleigh DE, Punnapayak H. Pullulan production by tropical isolates of Aureobasidium pullulans. J. Ind. Microbiol. Biotechnol. 34: 55-61 (2007)   DOI